Advertisement

Mathematische Zeitschrift

, Volume 266, Issue 1, pp 193–205 | Cite as

On the Hodge–Newton filtration for p-divisible \({\mathcal{O}}\) -modules

  • Elena Mantovan
  • Eva ViehmannEmail author
Article

Abstract

The notions Hodge–Newton decomposition and Hodge–Newton filtration for F-crystals are due to Katz and generalize Messing’s result on the existence of the local-étale filtration for p-divisible groups. Recently, some of Katz’s classical results have been generalized by Kottwitz to the context of F-crystals with additional structures and by Moonen to μ-ordinary p-divisible groups. In this paper, we discuss further generalizations to the situation of crystals in characteristic p and of p-divisible groups with additional structure by endomorphisms.

Keywords

Modulus Space Galois Group Additional Structure Valuation Ring Geometric Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csima, N.E.: Newton–Hodge filtration for self-dual F-crystals. Preprint, arXiv:0706.2530Google Scholar
  2. 2.
    de Jong A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Pub. Math. IHES 82, 5–96 (1995)zbMATHGoogle Scholar
  3. 3.
    Faltings G.: Integral crystalline cohomology over very ramified valuation rings. J. Am. Math. Soc. 12, 117–144 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Harris, M.: Local Langlands correspondences and vanishing cycles on Shimura varieties. European Congress of Mathematics, vol. I (Barcelona, 2000), pp. 407–427, Progr. Math., 201, Birkhäuser, Basel (2001)Google Scholar
  5. 5.
    Katz, N.: Slope filtration of F-crystals. Journées de Géométrie Algébrique de Rennes (Rennes, 1978), vol. I, Astérisque 63, pp. 113–163 (1979)Google Scholar
  6. 6.
    Kottwitz R.: Isocrystals with additional structure. Compos. Math. 56, 201–220 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kottwitz R.: Isocrystals with additional structure. II. Compos. Math. 109, 255–339 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Kottwitz R.: On the Hodge–Newton decomposition for split groups. Int. Math. Res. Not. 26, 1433–1447 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mantovan E.: On non-basic Rapoport–Zink spaces. Ann. sci. Ecole Norm. Sup. 41, 671–716 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Messing, W.: The crystals associated to Barsotti–Tate groups: with applications to abelian schemes. In: Lecture Notes in Mathematics, vol. 264. Springer, Berlin (1972)Google Scholar
  11. 11.
    Moonen B.: Serre–Tate theory for moduli spaces of PEL type. Ann. sci. Ecole Norm. Sup. 37, 223–269 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Rapoport M., Richartz M.: On the classification and specialization of F-isocrystals with additional structure. Compos. Math. 103, 153–181 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rapoport M., Zink Th.: Period spaces for p-divisible groups. In: Annals of Mathematics Studies, 141. Princeton University Press, Princeton (1996)Google Scholar
  14. 14.
    Viehmann E.: Connected components of affine Deligne–Lusztig varieties. Math. Ann. 340, 315–333 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Wedhorn T.: Ordinariness in good reductions of Shimura varieties of PEL-type. Ann. sci. Ecole Norm. Sup. 32, 575–618 (1999)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsCaltechPasadenaUSA
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations