Mathematische Zeitschrift

, Volume 266, Issue 1, pp 141–168

Hardy spaces associated to the Schrödinger operator on strongly Lipschitz domains of \({\mathbb{R}^d}\)

Article

Abstract

Let L = −Δ + V be a Schrödinger operator and Ω be a strongly Lipschitz domain of \({\mathbb R^{d}}\) , where Δ is the Laplacian on \({\mathbb R^{d}}\) and the potential V is a nonnegative polynomial on \({\mathbb R^{d}}\) . In this paper, we investigate the Hardy spaces on Ω associated to the Schrödinger operator L.

Keywords

Schrödinger operator Strongly Lipschitz domain Hardy spaces Boundary condition 

Mathematis Subject Classification (2000)

35J10 42B25 42B30 42B35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auscher P., Russ E.: Hardy spaces and divergence operators on strongly Lipschitz domain of \({\mathbb{R}^n}\) . J. Funct. Anal. 201, 148–184 (2003)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Auscher P., Tchamitchian P.: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: L p theory. Math. Ann. 320(3), 577–623 (2001)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Auscher P., McIntosh A., Russ E.: Hardy spaces of differential forms on Riemmannian manifolds. J. Geom. Anal. 18, 192–248 (2008)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Chang D.C.: The dual of Hardy spaces on a bounded domain in \({\mathbb{R}^n}\) . Forum. Math. 6, 65–81 (1994)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chang D.C., Krantz S.G., Stein E.M.: H p theory on a smooth domain in \({\mathbb{R}^n}\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Chang D.C., Dafni G., Stein E.M.: Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in \({\mathbb{R}^n}\) . Trans. Am. Math. Soc. 351, 1605–1661 (1999)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Coifman R.R., Meyer Y., Stein E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Duong X.T., Yan L.X.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Dziubański J.: Atomic decomposition of H p spaces associated with some Schrödinger operators. Indiana Univ. Math. J. 47, 75–98 (1998)MathSciNetMATHGoogle Scholar
  10. 10.
    Dziubański J., Garrigós G., Martínez T., Torrea J.L., Zienkiewicz J.: BMO spaces related to Schrödinger operator with potential satisfying reverse Hölder inequality. Math. Z. 249, 329–356 (2005)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Dziubański J., Zienkiewicz J.: Hardy spaces associated with some Schrödinger operators. Studia. Math. 126, 149–160 (1997)MathSciNetMATHGoogle Scholar
  12. 12.
    Dziubański J., Zienkiewicz J.: H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98, 5–38 (2003)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Fefferman C.: The uncertainty principle. Bull. Am. Math. Soc. (N.S.) 9, 129–206 (1983)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Fefferman C., Stein E.M.: H p spaces of several variables. Acta. Math. 129, 137–193 (1972)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Garcia-Cuerva J., Rubio de Francia J.L.: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116. North-Holland Publishing Co., Amsterdam (1985)Google Scholar
  16. 16.
    Huang, J.Z., Liu, H.P.: Littlewood-Paley functions associated with the Schrödinger operators. Mathematische Annalen (submitted)Google Scholar
  17. 17.
    Huang, J.Z., Liu, H.P.: Area integral associated with the Schrödinger operators. Indiana Univ. Math. J. (submitted)Google Scholar
  18. 18.
    Li H.: Estimations L p des opérateurs de Schrödinger sur les groupes nilpotents. J. Funct. Anal. 161, 152–218 (1999)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Peng, L.Z.: The dual spaces of \({\lambda_\alpha(\mathbb{R}^n)}\) . Thesis in Peking University (1981)Google Scholar
  20. 20.
    Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis and Related Topics”, Proceedings of the Centre for Math. and Appl., vol. 42, pp. 125–135. Australian National University, Canberra (2007)Google Scholar
  21. 21.
    Shen Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)MathSciNetMATHGoogle Scholar
  22. 22.
    Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972)MATHGoogle Scholar
  23. 23.
    Stein E.M.: Topics in Harmonic Analysis, Annals of Math Study. Princeton University Press, Princeton (1970)Google Scholar
  24. 24.
    Wang W.S.: The characterization of \({\lambda_\alpha(\mathbb{R}^n)}\) and the predual spaces of tent space. Acta. Sci. Natu. Univ. Pek. 24, 535–550 (1988)MATHGoogle Scholar
  25. 25.
    Zhong, J.: Harmonic analysis for some Schrödinger type operators. Ph.D. Thesis, Princeton University, Princeton (1993)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.College of SciencesNorth China University of TechnologyBeijingChina

Personalised recommendations