Mathematische Zeitschrift

, Volume 265, Issue 4, pp 951–970 | Cite as

Cluster structures from 2-Calabi–Yau categories with loops

  • Aslak Bakke Buan
  • Robert J. Marsh
  • Dagfinn F. VatneEmail author


We generalise the notion of cluster structures from the work of Buan–Iyama–Reiten–Scott to include situations where the endomorphism rings of the clusters may have loops. We show that in a Hom-finite 2-Calabi–Yau category, the set of maximal rigid objects satisfies these axioms whenever there are no 2-cycles in the quivers of their endomorphism rings. We apply this result to the cluster category of a tube, and show that this category forms a good model for the combinatorics of a type B cluster algebra.


Direct Summand Cluster Structure Endomorphism Ring Cluster Algebra Rigid Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander M., Smalø S.: Preprojective modules over Artin algebras. J. Algebra 66(1), 61–122 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barot M., Kussin D., Lenzing H.: The Grothendieck group of a cluster category. J. Pure Appl. Algebra 212(1), 33–46 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barot, M., Kussin, D., Lenzing, H.: The cluster category of a canonical algebra. Trans. Amer. Math. Soc preprint v. 3 arxiv:math.RT/0801.4540 (2008, to appear)Google Scholar
  4. 4.
    Bott R., Taubes C.: On the self-linking of knots Topology and physics. J. Math. Phys. 35(10), 5247–5287 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Composito Math., preprint v.3 arxiv:math/0701557 (2007, to appear)Google Scholar
  6. 6.
    Buan A.B., Marsh R., Reiten I.: Cluster mutation via quiver representations. Comment. Math. Helv. 83(1), 143–177 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Buan A.B., Caldero P., Keller B., Marsh R., Reiten I., Todorov G.: Appendix to Clusters and seeds for acyclic cluster algebras. Proc. Am. Math. Soc. 135(10), 3049–3060 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Burban I., Iyama O., Keller B., Reiten I.: Cluster tilting for one-dimensional hypersurface singularities. Adv. Math. 217(6), 2443–2484 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caldero P., Chapoton F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81(3), 595–616 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caldero P., Chapoton F., Schiffler R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Caldero P., Keller B.: From triangulated categories to cluster algebras II. Ann. Sci. École Norm. Sup. (4) 39(6), 983–1009 (2006)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Chapoton F., Fomin S., Zelevinsky A.: Polytopal realizations of generalized associahedra. Canad. Math. Bull. 45(4), 537–566 (2002)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Fomin S., Reading N.: Root systems and generalized associahedra. IAS/Park City Math. Ser. 13, 63–131 (2004)MathSciNetGoogle Scholar
  15. 15.
    Fomin S., Zelevinsky A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fomin S., Zelevinsky A.: Cluster algebras II: finite type classification. Invent. Math. 154(1), 63–121 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fomin S., Zelevinsky A.: Y-systems and generalized associahedra. Ann. Math. (2) 158(3), 977–1018 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fomin, S., Zelevinsky, A.: Cluster algebras: Notes for the CDM-03 conference CDM 2003: Current Developments in Mathematics. International Press, Cambridge, MA (2004)Google Scholar
  19. 19.
    Geiß C., Leclerc B., Schröer J.: Rigid modules over preprojective algebra. Invent. Math. 165(3), 589–632 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Iyama O., Yoshino Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172(1), 117–168 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Keller B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Keller B., Reiten I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211(1), 123–151 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Marsh R., Reineke M., Zelevinsky A.: Generalized associahedra via quiver representations. Trans. Am. Math. Soc. 355(10), 4171–4186 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Simion R.: A type-B associahedron. Adv. Appl. Math. 30, 2–25 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Aslak Bakke Buan
    • 1
  • Robert J. Marsh
    • 2
  • Dagfinn F. Vatne
    • 1
    Email author
  1. 1.Institutt for Matematiske FagNorges Teknisk-Naturvitenskapelige UniversitetTrondheimNorway
  2. 2.Department of Pure MathematicsUniversity of LeedsLeedsUK

Personalised recommendations