Advertisement

Mathematische Zeitschrift

, Volume 265, Issue 3, pp 493–509 | Cite as

Arithmetically Cohen–Macaulay bundles on complete intersection varieties of sufficiently high multidegree

  • Jishnu Biswas
  • G. V. RavindraEmail author
Article

Abstract

Recently it has been proved that any arithmetically Cohen–Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.

Keywords

Exact Sequence Vector Bundle Line Bundle Complete Intersection Chern Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauville A.: Determinantal hypersurfaces. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48, 39–64 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buchweitz R.-O., Greuel G.-M., Schreyer F.-O.: Cohen-Macaulay modules on hypersurface singularities. II. Invent. Math. 88(1), 165–182 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlson J., Green M., Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. I. Compos. Math. 50(2–3), 109–205 (1983)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Chiantini, L., Madonna, C.: ACM bundles on a general quintic threefold. Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001). Matematiche (Catania) 55 (2000), no. 2, 239–258 (2002)Google Scholar
  5. 5.
    Chiantini L., Madonna C.: A splitting criterion for rank 2 bundles on a general sextic threefold. Int. J. Math. 15(4), 341–359 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chiantini L., Madonna C.G.: ACM bundles on general hypersurfaces in \({\mathbb {P}^5}\) of low degree. Collect. Math. 56(1), 85–96 (2005)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Lecture Notes in Mathematics, vol. 340. Springer- Verlag, Berlin (1973)Google Scholar
  8. 8.
    Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995)Google Scholar
  9. 9.
    Green M.L.: Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29(3), 545–555 (1989)zbMATHGoogle Scholar
  10. 10.
    Green M., Müller-Stach S.: Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Compos. Math. 100(3), 305–309 (1996)zbMATHGoogle Scholar
  11. 11.
    Griffiths, P.A.: On the periods of certain rational integrals I, II. Ann. Math. 90(2), 460–495 (1969), ibid. 90(2), 496–541 (1969)Google Scholar
  12. 12.
    Griffiths P.A.: Infinitesimal variations of Hodge structure. III. Determinantal varieties and the infinitesimal invariant of normal functions. Compos. Math. 50(2–3), 267–324 (1983)zbMATHGoogle Scholar
  13. 13.
    Griffiths, P.: Infinitesimal invariant of normal functions. Topics in transcendental algebraic geometry. Ann. Math. Stud. 106, 305–316. Princeton University Press, Princeton (1984)Google Scholar
  14. 14.
    Griffiths P., Harris J.: On the Noether-Lefschetz theorem and some remarks on codimension-two cycles. Math. Ann. 271(1), 31–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. II. An infinitesimal invariant of Hodge classes. Compos. Math. 50(2–3), 207–265 (1983)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Harris J., Hulek K.: On the normal bundle of curves on complete intersection surfaces. Math. Ann. 264(1), 129–135 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Horrocks G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. Part 3 14, 689–713 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kleiman S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Inst. Hautes Études Sci. Publ. Math. 36, 281–297 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kleppe H.: Deformation of schemes defined by vanishing of Pfaffians. J. Algebra 53(1), 84–92 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lewis, J.D.: A survey of the Hodge conjecture, 2nd edn. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, xvi+368 pp (1999)Google Scholar
  21. 21.
    Madonna C.: A splitting criterion for rank 2 vector bundles on hypersurfaces in P4. Rend. Sem. Mat. Univ. Pol. Torino 56(2), 243–254 (1998)MathSciNetGoogle Scholar
  22. 22.
    Mohan Kumar N., Rao A.P., Ravindra G.V.: Arithmetically Cohen-Macaulay bundles on hypersurfaces. Comment. Math Helvetici 82(4), 829–843 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mohan Kumar, N., Rao, A.P., Ravindra, G.V.: Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces. International Math Research Notices (2007)Google Scholar
  24. 24.
    Mohan Kumar, N., Rao, A.P., Ravindra, G.V.: On codimension two ACM subvarieties in hypersurfaces. In: Lewis, J.D., de Jeu, R. (eds.) Motives and Algebraic Cycles: A Conference Dedicated to the Mathematical heritage of Spencer J. Bloch. Fields Communications Series, vol. 56 (2009)Google Scholar
  25. 25.
    Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Progress in Mathematics 3, BirkhäuserGoogle Scholar
  26. 26.
    Ravindra, G.V.: Curves on threefolds and a conjecture of Griffiths-Harris (2006, preprint)Google Scholar
  27. 27.
    Voisin, C.: Sur une conjecture de Griffiths et Harris. Algebraic curves and projective geometry (Trento, 1988), 270–275. Lecture Notes in Mathematics, 1389. Springer, Berlin (1989)Google Scholar
  28. 28.
    Voisin, C.: Hodge theory and complex algebraic geometry. II, Translated from the French by Leila Schneps. Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003)Google Scholar
  29. 29.
    Wu X.: On an infinitesimal invariant of normal functions. Math. Ann. 288(1), 121–132 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wu X.: On a conjecture of Griffiths-Harris generalizing the Noether-Lefschetz theorem. Duke Math. J. 60(2), 465–472 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteBangaloreIndia
  2. 2.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Mathematics and Computer ScienceUniversity of MissouriSt. LouisUSA

Personalised recommendations