Mathematische Zeitschrift

, Volume 265, Issue 2, pp 365–400 | Cite as

Use of abstract Hardy spaces, real interpolation and applications to bilinear operators

  • Frédéric BernicotEmail author


This paper can be considered as the sequel of Bernicot and Zhao (J Func Anal 255:1761–1796, 2008), where the authors have proposed an abstract construction of Hardy spaces H 1. They shew an interpolation result for these Hardy spaces with the Lebesgue spaces. Here we describe a more precise result using the real interpolation theory and we clarify the use of Hardy spaces. Then with the help of the bilinear interpolation theory, we then give applications to study bilinear operators on Lebesgue spaces. These ideas permit us to study singular operators with singularities similar to those of bilinear Calderón-Zygmund operators in a far more abstract framework as in the Euclidean case.


Hardy spaces Bilinear operators Atomic decomposition Real interpolation 

Mathematics Subject Classification (2000)

42B20 42B25 42B30 46B70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auscher P.: On L p estimates for square roots of second order elliptic operators on \({{\mathbb{R}}^{n}}\). Publ. Mat. 48, 159–186 (2004)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Auscher P.: On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on \({{\mathbb{R}}^n}\) and related estimates. Mem. Am. Math. Soc. 871, 186 (2007)MathSciNetGoogle Scholar
  3. 3.
    Auscher P., Martell J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: general operator theory and weights. Adv. Math. 212, 225–276 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Auscher P., Russ E.: Hardy spaces and divergence operators on strongly Lipschitz domains of \({{\mathbb{R}}^n}\). J. Funct. Anal. 201, 148–184 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergh J., Löfström J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)zbMATHGoogle Scholar
  6. 6.
    Bernicot F., Zhao J.: On maximal L p-regularity. J. Funct. Anal. 256, 2561–2586 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bernicot F., Zhao J.: Abstract Hardy spaces. J. Funct. Anal. 255, 1761–1796 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bownik M.: Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Am. Math. Soc. 133, 3535–3542 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Coifman R., Weiss G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    David, G.: Wavelets and Singular Integrals on Curves and Surfaces. In: Lecture Notes in Mathematics, vol. 1465. Springer, Berling (1991)Google Scholar
  11. 11.
    Duong, X.T., Grafakos, L., Yan, L.: Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans. AMS (to appear)Google Scholar
  12. 12.
    Duong X.T., Yan L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Duong X.T., Yan L.: New function spaces of BMO type, the John-Niremberg inequality, interplation and applications. Comm. Pures Appl. Math. 58, 1375–1420 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dziubański J.: Atomic decomposition of H p spaces associated with some Schrödinger operators. Indiana Univ. Math. J. 47, 75–98 (1998)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Dziubański J.: Spectral multipliers for Hardy spaces associated with Schrödinger operators with polynomial potentials. Bull. Lond. Math. Soc. 32, 571–581 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Dziubański J.: Note on H 1 spaces related to degenerate Schrödinger operators. Ill. J. Math. 49(4), 1271–1297 (2005)zbMATHGoogle Scholar
  17. 17.
    Dziubański J., Zienkiewicz J.: Hardy spaces H 1 for Schrödinger operators with compactly supported potentials. Ann. Math. 184, 315–326 (2005)zbMATHGoogle Scholar
  18. 18.
    Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education (2004)Google Scholar
  19. 19.
    Grafakos L., Kalton N.: The marcinkiewicz multiplier condition for bilinear operators. Stud. Math. 146, 115–156 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Grafakos L., Kalton N.: Multilinear Calderón-Zygmund operators on Hardy spaces. Collect. Math. 52, 169–179 (2001)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Grafakos L., Martell J.M.: Extrapolation of weighted norm inequalities for multivariable operators and applications. J. Geom. Anal. 14, 19–46 (2004)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Grafakos L., Mastylo M.: Interpolation of bilinear operators between quasi-Banach spaces. Pos. 10, 409–429 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Grafakos L., Tao T.: Multilinear interpolation between adjoint operators. J Funct. Anal. 199, 379–385 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Grafakos L., Torres R.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Ind. Univ. Math. J. 151, 1261–1276 (2002)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Grafakos L., Torres R.: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hofmann S., Mayboroda S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kaijser, S., Pelletier, J.W.: Interpolation functors and duality. In: Lect. Notes Math. 1208 (1980)Google Scholar
  28. 28.
    Meda S., Sjögren P., Vallarino M.: On the H 1L 1 boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)zbMATHCrossRefGoogle Scholar
  29. 29.
    Meyer Y., Taibleson M., Weiss G.: Some functional analytic properties of the spaces B q generated by blocks. Indiana. Univ. Math. J. 34, 493–515 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Muscalu C., Tao T., Thiele C.: Multi-linear operators given by singular multipliers. Journ. Am. Math. Soc. 15, 469–496 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Stein E.M.: Singular Integrals and Differentiability Properties of functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  32. 32.
    Stein E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  33. 33.
    Yang D., Zhou Y.: A boundedness criterion via atoms for linear operators in Hardy spaces. Const. Approx. 29, 207–218 (2009)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Université Paris-Sud XIOrsay CedexFrance

Personalised recommendations