Mathematische Zeitschrift

, Volume 264, Issue 4, pp 927–938 | Cite as

A simple group generated by involutions interchanging residue classes of the integers



We present a countable simple group which arises in a natural way from the arithmetical structure of the ring of integers.

Mathematics Subject Classification (2000)

Primary 20E32 Secondary 20B40 20B22 20-04 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baer R.: Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich. Stud. Math. 5, 15–17 (1934)Google Scholar
  2. 2.
    Baumslag G.: Wreath products and finitely presented groups. Math. Z. 75, 22–28 (1961)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boone W.W.: The word problem. Ann. Math. 70, 207–265 (1959)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Carter R.W.: Simple Groups of Lie Type. Wiley Classics Library Edition. Wiley, New York (1972)Google Scholar
  5. 5.
    Chehata C.G.: An algebraically simple ordered group. Proc. Lond. Math. Soc. 2(3), 183–197 (1952)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (2000)Google Scholar
  7. 7.
    Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996)Google Scholar
  8. 8.
    The GAP Group: GAP—Groups, Algorithms, and Programming; Version 4.4.10, 2007.
  9. 9.
    Higman G.: Finitely Presented Infinite Simple Groups. Notes on Pure Mathematics. Department of Pure Mathematics, Australian National University, Canberra (1974)Google Scholar
  10. 10.
    Holt D.F., Eick B., O’Brien E.A.: Handbook of Computational Group Theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2005)Google Scholar
  11. 11.
    Kegel O.H., Wehrfritz B.A.F.: Locally Finite Groups. North-Holland, Amsterdam (1973)MATHGoogle Scholar
  12. 12.
    Keller T.P.: Finite cycles of certain periodically linear permutations. Mo. J. Math. Sci. 11(3), 152–157 (1999)MATHGoogle Scholar
  13. 13.
    Kohl, S.: Restklassenweise Affine Gruppen. Dissertation, Universität Stuttgart, 2005.
  14. 14.
    Kohl, S.: RCWA—Residue-Class-Wise Affine Groups; Version 2.5.4, 2007, GAP package.
  15. 15.
    Kohl S.: Wildness of iteration of certain residue-class-wise affine mappings. Adv. Appl. Math. 39(3), 322–328 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kohl S.: Algorithms for a class of infinite permutation groups. J. Symb. Comp. 43(8), 545–581 (2008)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, 1977, Reprinted in the Springer Classics in Mathematics Series (2000)Google Scholar
  18. 18.
    Mihailova K.A.: The occurrence problem for direct products of groups (Russian). Mat. Sb. 70(112), 241–251 (1966)MathSciNetGoogle Scholar
  19. 19.
    Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory (Russian). Trudy Math. Inst. Steklov 44, 143 (1955)Google Scholar
  20. 20.
    Ol’shanskii A.Y.: Infinite groups with cyclic subgroups (Russian). Dokl. Akad. Nauk. SSSR 245(4), 785–787 (1979)MathSciNetGoogle Scholar
  21. 21.
    Stein M.: Groups of piecewise linear homoeomorphisms. Trans. Am. Math. Soc. 332(2), 477–514 (1992)MATHCrossRefGoogle Scholar
  22. 22.
    Wirsching, G.J.: The dynamical system on the natural numbers generated by the 3n + 1 function. Habilitationsschrift, Katholische Universität Eichstätt (1996)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Universiteti “Ismail Qemali” VloreVloreAlbania

Personalised recommendations