Mathematische Zeitschrift

, 264:209 | Cite as

Homotopy nilpotency in p-regular loop spaces

  • Shizuo Kaji
  • Daisuke Kishimoto


We consider the problem how far from being homotopy commutative is a loop space having the homotopy type of the p-completion of a product of finite numbers of spheres. We determine the homotopy nilpotency of those loop spaces as an answer to this problem.


Weyl Group Coxeter Group Homotopy Type Loop Space Ring Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andersen K.K.S., Grodal J., Møller J.M., Viruel A.: The classification of p-compact groups for p odd. Ann. Math. 167, 95–210 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aguadé J., Smith L.: On the mod p torus theorem of John Hubbuck. Math. Z. 19(2), 325–326 (1986)CrossRefGoogle Scholar
  3. 3.
    Bott R.: A note on the Samelson products in the classical groups. Comment. Math. Helv. 34, 249–256 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bousfield A.K., Kan D.M.: Homotopy Limits, Completions and Localizations LNM, vol.304. Springer, Berlin (1972)CrossRefGoogle Scholar
  5. 5.
    Clark A., Ewing J.: The realization of polynomial algebras as cohomology rings. Pacific J. Math. 50, 425–434 (1974)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dwyer W.G., Wilkerson C.W.: A new finite loop space at the prime two. J. Am. Math. Soc. 6, 37–64 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dwyer W.G., Wilkerson C.W.: Homotopy fixed-point methods for Lie groups and finite loop spaces. Ann. Math. 139, 395–442 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Friedlander E.M.: Exceptional isogenies and the classifying spaces of simple Lie groups. Ann. Math. 101, 510–520 (1975)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hamanaka, H., Kono, A.: A note on Samelson products in exceptional Lie groups. preprint available at
  10. 10.
    Harris B.: Suspensions and characteristic maps for symmetric spaces. Ann. Math. 76, 295–305 (1962)CrossRefGoogle Scholar
  11. 11.
    Hubbuck J.: On homotopy commutative H-spaces. Topology 8, 119–126 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Humphreys J.E.: Reflection groups and Coxeter groups Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)Google Scholar
  13. 13.
    James I.M., Thomas E.: Homotopy-abelian topological groups. Topology 1, 237–240 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kishimoto, D.: Homotopy nilpotency in localized SU(n). Homology Homotopy Appl. (to appear)Google Scholar
  15. 15.
    Kono A., Ōshima H.: Commutativity of the group of self-homotopy classes of Lie groups. Bull. London Math. Soc. 36, 37–52 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kumpel P.G.: Mod p-equivalences of mod p H-spaces. Quart. J. Math. 23, 173–178 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lin J.P.: Loops of H-spaces with finitely generated cohomology rings. Topology Appl. 60(2), 131–152 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    McGibbon C.: Homotopy commutativity in localized groups. Am. J. Math. 106, 665–687 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    McGibbon C.A.: Higher forms of homotopy commutativity and finite loop spaces. Math. Z. 201(3), 363–374 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Milnor J.W., Stasheff J.D.: Characteristic Classes, Ann. of Math. Studies, vol. 76. Princeton University Press, Princeton, NJ (1974)Google Scholar
  21. 21.
    Mimura M., Toda H.: Topology of Lie Groups I II, Translations of Math. Monographs, vol. 91. AMS, Providence, RI (1991)Google Scholar
  22. 22.
    Mislin G.: Nilpotent groups with finite commutator subgroups, Lecture Notes in Math, vol. 418. Springer, Berlin (1974)Google Scholar
  23. 23.
    Møller J.: N-determined 2-compact groups II. Fund. Math. 196(1), 1–90 (2007)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Møller J.: N-determined 2-compact groups I. Fund. Math. 195(1), 11–84 (2007)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Serre J.-P.: Groupes d’homotopie et classes des groupes abeliens. Ann. Math. 58, 258–294 (1953)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Toda H.: Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49. Princeton University Press, Princeton, NJ (1962)Google Scholar
  27. 27.
    Wilkerson C.W.: K-theory operations and mod p loop spaces. Math. Z. 132, 29–44 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Zabrodsky A.: Hopf Spaces, North-Holland Mathematics Studies, vol. 22. North-Holland, Amsterdam (1976)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of ScienceFukuoka UniversityFukuokaJapan
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations