Mathematische Zeitschrift

, Volume 263, Issue 3, pp 499–540 | Cite as

Codimensions of Newton strata for SL 3(F) in the Iwahori case

  • E. T. Beazley


We study the Newton stratification on SL 3(F), where F is a Laurent power series field. We provide a formula for the codimensions of the Newton strata inside each component of the affine Bruhat decomposition on SL 3(F). These calculations are related to the study of certain affine Deligne–Lusztig varieties. In particular, we describe a method for determining which of these varieties is non-empty in the case of SL 3(F).


Newton polygon Newton stratification Isocrystal Affine Bruhat decomposition Affine Deligne–Lusztig variety Frobenius-linear characteristic polynomial 

Mathematics Subject Classification (2000)

Primary 20G25 Secondary 14L05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adreatta, F., Goren, E.: Hilbert modular varieties of low dimension. Geometric aspects of Dwork theory, vol. I, Walter de Gruyter GmbH & Co., Berlin, pp. 113–175 (2004)Google Scholar
  2. 2.
    Barsotti, I.: Analytical methods for abelian varieties in positive characteristic, Colloq. Théorie des Groupes Algébriques (Bruxelles), pp. 77–85 (1962)Google Scholar
  3. 3.
    Blache R., Férard R.: Newton stratification for polynomials: the open stratum. J. Number Theory 123(2), 456–472 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bültel O., Wedhorn T.: Congruence relations for Shimura varieties associated to some unitary groups. J. Inst. Math. Jussieu 5(2), 229–261 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Chai C.-L.: Newton polygons as lattice points. Am. J. Math. 122(5), 967–990 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    de Jong A., Oort F.: Purity of the stratification by Newton polygons. J. Am. Math. Soc. 13(1), 209–241 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Demazure M.: Lectures on p-divisible groups. Lecture notes in mathematics, vol. 302. Springer, Berlin (1972)CrossRefGoogle Scholar
  8. 8.
    Goren E., Oort F.: Stratifications of Hilbert modular varieties. J. Algebraic Geom. 9(1), 111–154 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Goresky, M., Kottwitz, R., MacPherson, R.: Codimensions of root valuation strata, math.RT/0601197 (2006)Google Scholar
  10. 10.
    Görtz U., Haines T., Kottwitz R., Reuman D.: Dimensions of some affine Deligne–Lusztig varieties. Ann. Sci. école Norm. Sup. (4) 39(3), 467–511 (2006)zbMATHGoogle Scholar
  11. 11.
    Görtz, U., Haines, T., Kottwitz, R., Reuman, D.: Affine Deligne-Lusztig varieties in affine flag varieties, math.AG/0805.0045v1 (2008)Google Scholar
  12. 12.
    Grothendieck, A.: Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures été 1970 (Montréal, Que.), no. 45, Les Presses de l’Université de Montréal (1974)Google Scholar
  13. 13.
    Haines, T.: Introduction to Shimura varieties with bad reduction of parahoric type. Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. (4), pp. 583–642. Am. Math. Soc., Providence (2005)Google Scholar
  14. 14.
    Harashita S.: Ekedahl-Oort strata and the first Newton slope strata. J. Algebraic Geom. 16(1), 171–199 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001)Google Scholar
  16. 16.
    Katz, N.M.: Slope filtration of F-crystals. Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Vol. I, Astérisque, No. 63, pp. 113–163. Société Mathématique de France, Paris (1979)Google Scholar
  17. 17.
    Koblitz N.: p-adic variation of the zeta-function over families of varieties defined over finite fields. Composit. Math. 31(2), 119–218 (1975)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kottwitz R.: Isocrystals with additional structure. Composit. Math. 56(2), 201–220 (1985)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kottwitz R.: Isocrystals with additional structure II. Composit. Math. 109(3), 255–339 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Kottwitz R.: Dimensions of Newton strata in the adjoint quotient of reductive groups. Pure Appl. Math. Q. 2(3), 817–836 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, K.-Z., Oort, F.: Moduli of supersingular abelian varieties. Lecture notes in mathematics, vol. 1680. Springer, Berlin (1998)Google Scholar
  22. 22.
    Manin, J.I.: Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk 18, no. 6 (114), 3–90Google Scholar
  23. 23.
    Norman P., Oort F.: Moduli of abelian varities. Ann. Math. (2) 112(3), 413–439 (1980)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Oort F.: Moduli of abelian varities and Newton polygons. C. R. Acad. Sci. Paris Sér. I Math. 312(5), 385–389 (1991)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Oort, F.: Moduli of abelian varieties in positive characteristic. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., vol. 15, pp. 253–276. Academic Press, San Diego (1994)Google Scholar
  26. 26.
    Oort F.: Newton polygons and formal groups: conjectures by Manin and Grothendieck. Ann. Math. (2) 152(1), 183–206 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Oort, F.: Newton polygon strata in the moduli space of abelian varieties. Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, pp. 417–440. Birkhü‘user, Basel (2001)Google Scholar
  28. 28.
    Oort F.: Foliations in moduli spaces of abelian varieties. J. Am. Math. Soc. 17(2), 267–296 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Oort, F.: Newton polygons and p-divisible groups: a conjecture by Grothendieck. Automorphic forms I, Astérisque, No. 298, pp. 255–269. Société Mathématique de France, Paris (2005)Google Scholar
  30. 30.
    Rapoport, M.: On the Newton stratification. Séminaire Bourbaki, vol. 2001/2002, Astérisque, no. 290, pp. 207–224. Société Mathématique de France, Paris (2003)Google Scholar
  31. 31.
    Rapoport, M.: A guide to the reduction modulo p of Shimura varieties. Automorphic forms I, Astérisque, no. 298, pp. 271–318. Société Mathématique de France, Paris (2005)Google Scholar
  32. 32.
    Rapoport M., Richartz M.: On the classification and specialization of F-isocrystals with additional structure. Composit. Math. 103(2), 153–181 (1996)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Reuman D.: Formulas for the dimensions of some affine Deligne-Lusztig varieties. Michigan Math. J. 52(2), 435–451 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Tate, J.: Classes d’isogénie de variétés abéliennes sur un corps fini (d’après T. Honda). Lecture notes in mathematics, Séminaire Bourbaki, vol. 1968/69: Exp. 347-363, vol. 179. Springer, Berlin (1971)Google Scholar
  35. 35.
    van der Geer, G., Oort F.: Moduli of abelian varieties: a short introduction and survey. Moduli of curves and abelian varieties, Aspects Math. E33, pp. 1–21. Vieweg, Braunschweig (1999)Google Scholar
  36. 36.
    Vasiu A.: Crystalline boundedness principle. Ann. Sci. école Norm. Sup. (4) 39(2), 245–300 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Viehmann E.: The dimensions of some affine Deligne-Lusztig varieties. Ann. Sci. école Norm. Sup. (4) 39(3), 513–526 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Viehmann E.: Connected components of closed affine Deligne-Lusztig varieties. Math. Ann. 340(2), 315–333 (2007)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Viehmann, E.: The global structure of moduli spaces of polarized p-divisible groups. math.AG/0703841v1 (2007)Google Scholar
  40. 40.
    Viehmann E.: Moduli spaces of p-divisible groups. J. Algebraic Geom. 17(2), 341–374 (2008)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wedhorn T.: Ordinariness in good reductions of Shimura varieties of PEL-type. Ann. Sci. école Norm. Sup. (4) 32(5), 575–618 (1999)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Wedhorn, T.: The dimension of Oort strata of Shimura varieties of PEL-type. Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, pp. 441–471. Birkhäuser, Basel (2001)Google Scholar
  43. 43.
    Wedhorn, T.: Congruence relations in the Siegel case. Functional analysis, VII (Dubrovnik, 2001), Various Publ. Ser. (Aarhus), vol. 46, pp. 193–217. Univ. Aarhus, Aarhus (2002)Google Scholar
  44. 44.
    Weil, A.: Variétés abéliennes et courbes algébriques. Actualités Sci. Ind., no. 1064, Publ. Inst. Math. Univ. Strasbourg 8 (1946). Hermann, Paris (1948)Google Scholar
  45. 45.
    Yu C.-F.: On the slope stratification of certain Shimura varieties. Math. Zeit. 251(4), 859–873 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations