Generalized DPW method and an application to isometric immersions of space forms

  • David BranderEmail author
  • Josef Dorfmeister


Let G be a complex Lie group and ΛG denote the group of maps from the unit circle \({{\mathbb S}^1}\) into G, of a suitable class. A differentiable map F from a manifold M into ΛG, is said to be of connection order \({(_a^b)}\) if the Fourier expansion in the loop parameter λ of the \({{\mathbb S}^1}\)-family of Maurer-Cartan forms for F, namely \({F_\lambda^{-1} {\rm d} F_\lambda}\), is of the form \({\sum_{i=a}^b \alpha_i \lambda^i}\). Most integrable systems in geometry are associated to such a map. Roughly speaking, the DPW method used a Birkhoff type splitting to reduce a harmonic map into a symmetric space, which can be represented by a certain order \({(_{-1}^1)}\) map, into a pair of simpler maps of order \({(_{-1}^{-1})}\) and \({(_1^1)}\), respectively. Conversely, one could construct such a harmonic map from any pair of \({(_{-1}^{-1})}\) and \({(_1^1)}\) maps. This allowed a Weierstrass type description of harmonic maps into symmetric spaces. We extend this method to show that, for a large class of loop groups, a connection order \({(_a^b)}\) map, for a < 0 < b, splits uniquely into a pair of \({(_a^{-1})}\) and \({(_1^b)}\) maps. As an application, we show that constant non-zero sectional curvature submanifolds with flat normal bundle of a sphere or hyperbolic space split into pairs of flat submanifolds, reducing the problem (at least locally) to the flat case. To extend the DPW method sufficiently to handle this problem requires a more general Iwasawa type splitting of the loop group, which we prove always holds at least locally.

Mathematics Subject Classification (2000)

Primary 37K10 37K25 53C42 53B25 Secondary 53C35 


  1. 1.
    Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: The inverse scattering transform—Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)MathSciNetGoogle Scholar
  2. 2.
    Balan V., Dorfmeister J.: Birkhoff decompositions and Iwasawa decompositions for loop groups. Tohoku Math. J. 53, 593–615 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bausch J., Rousseau G.: Algèbres de Kac-Moody affines: involutions de première espèce des algèbres affines. Inst. Élie Cartan 11, 125–139 (1989)MathSciNetGoogle Scholar
  4. 4.
    Bergvelt M.J., Guest M.A.: Actions of loop groups on harmonic maps. Trans. Am. Math. Soc. 326, 861–886 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 1–9 (1960–1982)Google Scholar
  6. 6.
    Brander D.: Curved flats, pluriharmonic maps and constant curvature immersions into pseudo-Riemannian space forms. Ann. Glob. Anal. Geom. 32, 253–275 (2007). doi: 10.1007/s10455-007-9063-y CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Brander, D.: Grassmann geometries in infinite dimensional homogeneous spaces and an application to reflective submanifolds. Int. Math. Res. Not. (2007), rnm092–38. doi: 10.1093/imrn/rnm092
  8. 8.
    Brander, D.: k-symmetric AKS systems and flat immersions into spheres. J. Lond. Math. Soc. (2) 77, 299–319 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Brander, D., Rossman, W., Schmitt, N.: Holomorphic representation of constant mean curvature surfaces in Minkowski space: consequences of non-compactness in loop group methods (2008). arXiv:math/0804.1596.Google Scholar
  10. 10.
    Burstall F.E.: Harmonic tori in spheres and complex projective spaces. J. Reine Angew. Math. 469, 149–177 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Burstall F.E., Ferus D., Pedit F., Pinkall U.: Harmonic tori in symmetric spaces and commuting Hamlitonian systems on loop algebras. Ann. Math. (2) 138, 173–212 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Burstall F.E., Hertrich-Jeromin U., Pedit F., Pinkall U.: Curved flats and isothermic surfaces. Math. Z. 225, 199–209 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Burstall, F.E., Pedit, F.: Harmonic maps via Adler-Kostant-Symes theory. In: Harmonic maps and integrable systems. Aspects of Mathematics, no. E23. Vieweg, Braunschweig (1994)Google Scholar
  14. 14.
    Dorfmeister, J.: Generalized Weierstraß representations of surfaces. In: Surveys on Geometry and Integrable Systems, Advanced Studies in Pure Mathematics (2008, to appear)Google Scholar
  15. 15.
    Dorfmeister J., Eitner U.: Weierstrass-type representation of affine spheres. Abh. Math. Sem. Univ. Hamb. 71, 225–250 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Dorfmeister J., Eschenburg J.H.: Pluriharmonic maps, loop groups and twistor theory. Ann. Glob. Anal. Geom. 24, 301–321 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Dorfmeister J., Pedit F., Wu H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Dorfmeister J., Wu H.: Constant mean curvature surfaces and loop groups. J. Reine Angew. Math. 440, 43–76 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ferus D., Pedit F.: Curved flats in symmetric spaces. Manuscr. Math. 91, 445–454 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Ferus D., Pedit F.: Isometric immersions of space forms and soliton theory. Math. Ann. 305, 329–342 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ferus D., Pedit F., Pinkall U., Sterling I.: Minimal tori in S 4. J. Reine Angew. Math. 429, 1–47 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Guest, M.A.: Harmonic maps, loop groups, and integrable systems. In: London Mathematical Society Student Texts, vol. 38. Cambridge University Press, London (1997)Google Scholar
  23. 23.
    Guest M.A., Ohnita Y.: Group actions and deformations for harmonic maps. J. Math. Soc. Jpn 45(4), 671–704 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Heintze, E.: Real forms and finite order automorphisms of affine Kac-Moody algebras—an outline of a new approach. RIMS Kokyuroku (2008, to appear). arXiv:math/0712.2320Google Scholar
  25. 25.
    Hélein F., Romon P.: Hamiltonian stationary Lagrangian surfaces in C 2. Commun. Anal. Geom. 10, 79–126 (2002)zbMATHGoogle Scholar
  26. 26.
    Hitchin N.J.: Harmonic maps from T 2 to S 3. Adv. Ser. Math. Phys. 4, 103–112 (1986)MathSciNetGoogle Scholar
  27. 27.
    Kac V., Peterson D.: On geometric invariant theory for infinite-dimensional groups. Lect. Notes Math. 1271, 109–142 (1987)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Kellersch P.: Eine Verallgemeinerung der Iwasawa Zerlegung in Loop Gruppen. In: Differential Geometry-Dynamical Systems. Monographs, vol. 4. Geometry Balkan Press, Bucharest (2004)Google Scholar
  29. 29.
    Krichever I.M.: An analogue of the d’Alembert formula for the equations of a principal chiral field and the sine-Gordon equation. Dokl. Akad. Nauk SSSR 253(2), 288–292 (1980)MathSciNetGoogle Scholar
  30. 30.
    Levstein F.: A classification of involutive automorphisms of an affine Kac-Moody Lie algebra. J. Algebra 114(2), 489–518 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Moore J.D.: Isometric immersions of space forms in space forms. Pac. J. Math. 40, 157–166 (1972)zbMATHGoogle Scholar
  32. 32.
    Pinkall U., Sterling I.: On the classification of constant mean curvature tori. Ann. Math. (2) 130, 407–451 (1989)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Pressley A., Segal G.: Loop Groups. In: Oxford Math. Monographs. Clarendon Press, Oxford (1986)Google Scholar
  34. 34.
    Terng, C.L.: Geometries and symmetries of soliton equations and integrable elliptic equations. arXiv:math/0212372. In: Surveys on Geometry and integrable Systems. Advanced Studies Pure Math., Math. Soc. Japan (to appear)Google Scholar
  35. 35.
    Terng, C.L., Uhlenbeck, K.: The n × n KdV flows (2006). arXiv:nlin/0611006Google Scholar
  36. 36.
    Toda, M.: Pseudospherical surfaces via moving frames and loop groups. PhD Thesis, University of Kansas (2000)Google Scholar
  37. 37.
    Toda M.: Weierstrass-type representation of weakly regular pseudospherical surfaces in Euclidean space. Balkan J. Geom. Appl. 7, 87–136 (2002)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Toda M.: Initial value problems of the sine-Gordon equation and geometric solutions. Ann. Glob. Anal. Geom. 27(3), 257–271 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Uhlenbeck K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differ. Geom. 30, 1–50 (1989)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zakharov V.E., Shabat A.B.: Integration of non-linear equations of mathematical physics by the inverse scattering method, II. Funct. Anal. Appl. 13, 166–173 (1979)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKobe UniversityKobeJapan
  2. 2.TU Munich, Zentrum Mathematik (M8)GarchingGermany

Personalised recommendations