Mathematische Zeitschrift

, Volume 261, Issue 1, pp 189–200 | Cite as

Analytic properties in the spectrum of certain Banach algebras



We show a sufficient condition for a domain in \({\mathbb{C}^{n}}\) to be a H-domain of holomorphy. Furthermore if a domain \({\Omega \subset\subset \mathbb{C}^{n}}\) has the Gleason \({\mathcal{B}}\) property at a point \({p \in \Omega}\) and the projection of the n − 1th order generalized Shilov boundary does not coincide with Ω then \({\mathcal{M}^{B}}\) is schlicht. We also give two examples of pseudoconvex domains in which the spectrum is non-schlicht and satisfy several other interesting properties.


Holomorphic functions Banach algebras Nebenhülle \({\overline\partial}\) -Problems Generalized Shilov boundary 

Mathematics Subject Classification (2000)

32A65 32W05 46J20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backlund, U., Fällström, A.: A pseudoconvex domain with nonschlicht H -envelope, geometrical and algebraical aspects in several complex variables (Cetraro, 1989). In: Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 13–18. MR 94f:32034Google Scholar
  2. 2.
    Backlund, U., Fällström, A.: Counterexamples to the Gleason problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(3), 595–603 (1998) MR MR1635710 (2000c:46097)MATHMathSciNetGoogle Scholar
  3. 3.
    Basener, R.F.: A generalized Shilov boundary and analytic structure. Proc. Am. Math. Soc. 47, 98–104 (1975) MR 50 #5476MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carlsson, L.: Nebenhülle and the Gleason problem, Submitted (2006)Google Scholar
  5. 5.
    Carlsson, L.: Trivial generators for nontrivial fibres, Math. Bohem. (to appear 2008)Google Scholar
  6. 6.
    Carlsson, L., Cegrell, U., Fällström, A.: Spectrum of certain Banach algebras and \({\overline\partial}\) problems. Ann. Pol. Math. 90, 51–58 (2007)MATHCrossRefGoogle Scholar
  7. 7.
    Diederich, K., Fornaess, J.E.: Pseudoconvex domains: an example with nontrivial nebenhülle. Math. Ann. 225(3), 275–292 (1977) MR 55 #3320MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fällström, A.: Algebras of bounded holomorphic functions. Ph.D. thesis, Umeå universitet, Umeå, 1994, Dissertation, University of Umeå, Umeå, 1994, pp. vi+79. MR 95m:46084Google Scholar
  9. 9.
    Gleason A.M. (1964). Finitely generated ideals in Banach algebras. J. Math. Mech. 13, 125–132 MR 28 #2458MATHMathSciNetGoogle Scholar
  10. 10.
    Jarnicki, M., Pflug, P.: Extension of holomorphic functions, de Gruyter Expositions in Mathematics, vol. 34. Walter de Gruyter & Co., Berlin (2000). MR MR1797263 (2001k:32017)Google Scholar
  11. 11.
    Sibony, N.: Prolongement Analytique des Fonctions Holomorphes Bornées, Séminaire Pierre Lelong (Analyse) (année 1972–1973). Springer, Berlin (1974) pp. 44–66. Lecture Notes in Math., vol. 410. MR 51 #13286Google Scholar
  12. 12.
    Sibony, N.: Multi-dimensional analytic structure in the spectrum of a uniform algebra, Spaces of analytic functions (Sem. Functional Anal. and Function Theory, Kristiansand, 1975), Springer, Berlin (1976) pp. 139–165. Lecture Notes in Math., vol. 512. MR MR0632106 (58 #30277)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden

Personalised recommendations