Advertisement

Mathematische Zeitschrift

, Volume 260, Issue 2, pp 265–275 | Cite as

A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic

  • Yuuki TadokoroEmail author
Article

Abstract

We prove some value of the harmonic volume for the Klein quartic C is nonzero modulo \(\frac{1}{2}{\mathbb{Z}}\) , using special values of the generalized hypergeometric function 3 F 2. This result tells us the algebraic cycle C − C is not algebraically equivalent to zero in the Jacobian variety J(C).

Keywords

Harmonic volume Iterated integral Algebraic cycle 

Mathematics Subject Classification (2000)

14H30 14H40 30F30 32G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch S. (1984). Algebraic cycles and values of L-functions. J. Reine Angew. Math. 350: 94–108 zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ceresa G. (1983). C is not algebraically equivalent to C in its Jacobian. Ann. Math. (2) 117(2): 285–291 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen K.T. (1971). Algebras of iterated path integrals and fundamental groups. Trans. Am. Math. Soc. 156: 359–379 zbMATHCrossRefGoogle Scholar
  4. 4.
    Fulton W.: Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer, Berlin (1998)Google Scholar
  5. 5.
    Hain R.M.: The geometry of the mixed Hodge structure on the fundamental group. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). In: Proc. Sympos. Pure Math., 46, Part 2, pp. 247–282. Amer. Math. Soc., Providence (1987)Google Scholar
  6. 6.
    Harris B. (1983). Harmonic volumes. Acta Math. 150(1–2): 91–123 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Harris B. (1983). Homological versus algebraic equivalence in a Jacobian. Proc. Natl. Acad. Sci. USA 80(4i.): 1157–1158 zbMATHCrossRefGoogle Scholar
  8. 8.
    Harris B. (2004). Iterated Integrals and Cycles on Algebraic Manifolds Nankai Tracts in Mathematics 7. World Scientific Publishing Co. Inc., River Edge Google Scholar
  9. 9.
    Paranjape, K.H., Srinivas, V.: Algebraic Cycles, Current Trends in Mathematics and Physics, pp. 71–86. Narosa, New Delhi (1995)Google Scholar
  10. 10.
    Edited by Levy S.: The eightfold way. The Beauty of Klein’s quartic curve. Mathematical Sciences Research Institute Publications, Vol. 35. Cambridge University Press, Cambridge (1999)Google Scholar
  11. 11.
    Slater L.J. (1966). Generalized Hypergeometric Functions. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  12. 12.
    Pulte M.J. (1988). The fundamental group of a Riemann surface: mixed Hodge structures and algebraic cycles. Duke Math. J. 57(3): 721–760 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pirola G.P.: The infinitesimal invariant of C +C . Algebraic cycles and Hodge theory (Torino, 1993). Lecture Notes in Math., Vol. 1594, pp. 223–232. Springer, Berlin (1994)Google Scholar
  14. 14.
    Tadokoro Y. (2005). The harmonic volumes of hyperelliptic curves. Publ. Res. Inst. Math. Sci. 41(3): 799–820 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tadokoro Y. (2006). The pointed harmonic volumes of hyperelliptic curves with Weierstrass base points. Kodai Math. J. 29(3): 370–382 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tretkoff, C.L., Tretkoff, M. D.: Combinatorial group theory, Riemann surfaces and differential equations. Contributions to group theory, Contemp. Math., Vol. 33, pp. 467–519. Amer. Math. Soc., Providence (1984)Google Scholar
  17. 17.
    Weil A. (1962) Foundations of Algebraic Geometry. American Mathematical Society, ProvidencezbMATHGoogle Scholar
  18. 18.
    Weil A. (1979). Scientific Works Collected Papers, Vol. II (1951–1964). Springer, Heidelberg Google Scholar
  19. 19.
    Wolfram S. (1999). The Mathematica book, 4th edn. Wolfram Media/Cambridge University Press, Cambridge zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Natural Science EducationKisarazu National College of TechnologyChibaJapan

Personalised recommendations