Mathematische Zeitschrift

, 259:755 | Cite as

Primes dividing the degrees of the real characters



Let G be a finite group and let Irr(G) denote the set of all complex irreducible characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the degree of any χ \(\in\) Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-valued version of this theorem, where instead of Irr(G) we only consider the subset Irrrv(G) consisting of all real-valued irreducible characters of G. We also prove that the character degree graph associated to Irrrv(G) has at most 3 connected components. Similar results for the set of real conjugacy classes of G have also been obtained.


  1. 1.
    Bessenrodt C., Navarro G., Olsson J. and Tiep P.H. (2007). On the Navarro–Willems conjecture for blocks of finite groups. J. Pure Appl. Algebra 208: 481–484 CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Borel A., Carter R., Curtis C.W., Iwahori N., Springer T.A. and Steinberg R. (1970). Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics, vol. 131. Springer, Berlin CrossRefGoogle Scholar
  3. 3.
    Broué M. and Michel J. (1989). Blocs et séries de Lusztig dans un groupe réductif fini. J. reine angew. Math. 395: 56–67 MathSciNetMATHGoogle Scholar
  4. 4.
    Carter R. (1985). Finite Groups of Lie type: Conjugacy Classes and Complex Characters. Wiley, Chichester MATHGoogle Scholar
  5. 5.
    Chillag D. and Mann A. (1998). Nearly odd-order and nearly real finite groups. Commun. Algebra 26: 2041–2064 CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Conway J.H., Curtis R.T., Norton S.P., Parker R.A. and Wilson R.A. (1985). An ATLAS of Finite Groups. Clarendon Press, Oxford Google Scholar
  7. 7.
    Digne F. and Michel J. (1991). Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts 21. Cambridge University Press, London Google Scholar
  8. 8.
    Feit W. (1993). Extending Steinberg characters, In: Linear algebraic groups and their representations, (Los Angeles, CA, 1992). Contemp. Math. 153: 1–9 MathSciNetGoogle Scholar
  9. 9.
    The GAP group, \(\sf{GAP}\) —groups, algorithms, and programming, Verion 4.4, 2004,
  10. 10.
    Geck M. (1990). Irreducible Brauer characters of the 3-dimensional special unitary groups in non-describing characteristic. Commun. Algebra 18: 563–584 CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Geck M., Hiss G., Lübeck F., Malle G. and Pfeifer G. (1996). \(\sf{CHEVIE}\) —a system for computing and processing generic character tables for finite groups of Lie type, Weyl groups, and Hecke algebras. AAECC 7: 175–210 MATHGoogle Scholar
  12. 12.
    Gorenstein, D., Lyons, R., Solomon, R.: The classification of the finite simple groups, Number 3. Mathematical Surveys and Monographs, Am. Math. Soc., Providence (1994)Google Scholar
  13. 13.
    Gow R. (1983). Properties of the characters of the finite general linear group related to the transpose-inverse involution. Proc. Lond. Math. Soc. 47: 493–506 CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Hiss, G.: Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Characteristik, Habilitationsschrift, Lehrstuhl D für Mathematik, RWTH Aachen, Germany (1993)Google Scholar
  15. 15.
    Isaacs I.M. (1994). Character Theory of Finite Groups. Dover, New York MATHGoogle Scholar
  16. 16.
    James G. and Kerber A. (1981). The Representation Theory of the Symmetric Group. Addison-Wesley, Reading MATHGoogle Scholar
  17. 17.
    Kleidman, P.B., Liebeck, M.W.: The subgroup structure of the finite classical groups. London Math. Soc. Lecture Note Ser. no. 129. Cambridge University Press, London (1990)Google Scholar
  18. 18.
    Kleidman P.B. (1988). The maximal subgroups of the Chevalley groups G 2(q) with q odd, of the Ree groups 2 G 2(q) and of their automorphism groups. J. Algebra 117: 30–71 CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Lusztig G. (1984). Characters of Reductive Groups over a Finite Field Annals of Math. Studies 107. Princeton University Press, Princeton Google Scholar
  20. 20.
    Lübeck F. (2001). Smallest degrees of representations of exceptional groups of Lie type. Commun. Algebra 29: 2147–2169 CrossRefMATHGoogle Scholar
  21. 21.
    Magaard K., Malle G. and Tiep P.H. (2002). Irreducibility of tensor squares, symmetric squares, and alternating squares. Pac. J. Math. 202: 379–427 MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Manz O., Staszewski R. and Willems W. (1988). On the number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103: 31–37 CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Moretó, A., Tiep, P.H.: Prime divisors of character degrees. J. Group Theory (in press)Google Scholar
  24. 24.
    Navarro, G.: Fields, values and character extensions in finite groups. J. Group Theory (in press)Google Scholar
  25. 25.
    Navarro, G., Tiep, P.H.: Rational irreducible characters and rational conjugacy classes in finite groups. Trans. Am. Math. Soc. (in press)Google Scholar
  26. 26.
    Navarro, G., Tiep, P.H., Turull, A.: Brauer characters with cyclotomic field of values. J. Pure Appl. Algebra (in press)Google Scholar
  27. 27.
    Sin P. and Tiep P.H. (2005). Rank 3 permutation modules for finite classical groups. J. Algebra 291: 551–606 CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Tiep P.H. and Zalesskii A.E. (2005). Real conjugacy classes in algebraic groups and finite groups of Lie type. J. Group Theory 8: 291–315 CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Zsigmondy K. (1892). Zur Theorie der Potenzreste. Monath. Math. Phys. 3: 265–284 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di FirenzeFlorenceItaly
  2. 2.Departament d’ÀlgebraUniversitat de ValènciaBurjassotSpain
  3. 3.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations