Advertisement

Mathematische Zeitschrift

, Volume 259, Issue 3, pp 525–574 | Cite as

The moduli space of regular stable maps

  • Joel W. Robbin
  • Yongbin Ruan
  • Dietmar A. SalamonEmail author
Article

Abstract

We prove that the moduli space of regular stable maps in a complex manifold admits a natural complex orbifold structure. Our proof is based on Hardy decompositions and Fredholm intersection theory.

Keywords

Modulus Space Complex Manifold Homology Class Universal Family Complex Submanifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fulton W. and Pandharipande R. (1997). Notes on stable maps and quantum cohomology. In: Algebraic Geometry-Santa uz 1995 ed. Kollar, Lazersfeld, Morrison. Proc. Symp. Pure Math. 62: 45–96 MathSciNetGoogle Scholar
  2. 2.
    McDuff D. and Salamon D.A. (2004). J-holomorphic Curves and Symplectic Topology. AMS Colloquium Publications, Providence zbMATHGoogle Scholar
  3. 3.
    Milnor J. (1965). Topology from the Differential Viewpoint. Princeton University Press, Princeton Google Scholar
  4. 4.
    Robbin, J.W., Salamon, D.A.: A construction of the Deligne–Mumford orbifold. J. Eur. Math. Soc. 8, 611–699 (2004). Corrigendum, July 2007, to appear in JEMS.Google Scholar
  5. 5.
    Ruan Y. and Tian G. (1995). A mathematical theory of quantum cohomology. J. Differ. Geom. 42: 259–367 zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Joel W. Robbin
    • 1
  • Yongbin Ruan
    • 1
  • Dietmar A. Salamon
    • 2
    Email author
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA
  2. 2.Department MathematikETH ZürichZürichSwitzerland

Personalised recommendations