Mathematische Zeitschrift

, Volume 258, Issue 1, pp 143–160 | Cite as

From triangulated categories to abelian categories: cluster tilting in a general framework

  • Steffen KoenigEmail author
  • Bin Zhu


A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (i.e., a maximal 1-orthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.


Triangulated categories Abelian categories 1-Orthogonal categories Tilting Cluster categories Gorenstein algebras 

Mathematics Subject Classification (2000)

16G20 16G70 19S99 17B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buan, A., Marsh, R.: Cluster-tilting theory. In: de la Peña, J., Bautista, R. (eds.) Trends in Representation Theory of algebras and related topics. Contemporary Mathematics 406, 1–30 (2006)Google Scholar
  2. 2.
    Buan A., Marsh R. and Reiten I. (2007). Cluster-tilted algebras. Trans. AMS 359: 323–332 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buan A., Marsh R., Reineke M., Reiten I. and Todorov G. (2006). Tilting theory and cluster combinatorics. Adv. Math. 204: 572–618 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Caldero P., Chapoton F. and Schiffler R. (2006). Quivers with relations arising from clusters (A n case). Trans. AMS 358: 1347–1364 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caldero P., Chapoton F. and Schiffler R. (2006). Quivers with relations and cluster-tilted algebars. Algebras Represent. Theory 9(4): 359–376 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fomin S. and Zelevinsky A. (2002). Cluster algebras I: foundations. J. Am. Math. Soc. 15(2): 497–529 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fomin S. and Zelevinsky A. (2003). Cluster algebras II: finite type classification. Invent. Math. 154(1): 63–121 zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 Conference. CDM 2003: Current Developments in Mathematics. International Press (2004)Google Scholar
  9. 9.
    Gelfand S.I. and Manin Y.I. (1996). Methods of homological algebra. Translated from the 1988 Russian original. Springer, Berlin Google Scholar
  10. 10.
    Happel, D.: Triangulated categories in the representation theory of quivers. LMS Lecture Note Series, 119. Cambridge (1988)Google Scholar
  11. 11.
    Iyama, O.: Higher dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Preprint, arXiv:math.RT/0407052Google Scholar
  12. 12.
    Iyama, O.: Higher dimensional Auslander correspondence. Preprint, arXiv:math.RT/040711631Google Scholar
  13. 13.
    Keller B. (2005). Triangulated orbit categories. Doc. Math. 10: 551–581 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Preprint, arXiv: math.RT/0512471Google Scholar
  15. 15.
    Krause H. (1997). Stable equivalence preserves representation type. Comment. Math. Helv. 72: 266–284 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ringel, C.M.: Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. An appendix to the Handbook of tilting theory. In: Angeleri-Hügel, L., Happel, D., Krause, H. (eds.) Cambridge University Press, LMS Lecture Notes Series 332 (2007)Google Scholar
  17. 17.
    Xiao J. and Zhu B. (2005). Locally finite triangulated categories. J. Algebra 290: 473–490 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Zhu B. (2006). Equivalences between cluster categories. J. Algebra 304: 832–850 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhu, B.: Preprojective cluster variables of acyclic cluster algebras. Preprint, arXiv:math.RT/0511706Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations