Mathematische Zeitschrift

, Volume 256, Issue 3, pp 615–646

Stein structures and holomorphic mappings

Article
  • 95 Downloads

Abstract

We prove that every continuous map from a Stein manifold X to a complex manifold Y can be made holomorphic by a homotopic deformation of both the map and the Stein structure on X. In the absence of topological obstructions, the holomorphic map may be chosen to have pointwise maximal rank. The analogous result holds for any compact Hausdorff family of maps, but it fails in general for a noncompact family. Our main results are actually proved for smooth almost complex source manifolds (X,J) with the correct handlebody structure. The paper contains another proof of Eliashberg’s (Int J Math 1:29–46, 1990) homotopy characterization of Stein manifolds and a slightly different explanation of the construction of exotic Stein surfaces due to Gompf (Ann Math 148(2): 619–693, 1998; J Symplectic Geom 3:565–587, 2005).

Keywords

Stein manifolds Complex structures Holomorphic mappings 

Mathematics Subject Classification (2000)

32H02 32Q30 32Q55 32Q60 32T15 57R17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreotti A. and Fraenkel T. (1959). The Lefshetz theorem on hyperplane sections. Ann. Math. 69: 713–717 CrossRefGoogle Scholar
  2. 2.
    Arnol’d V. (1980). Lagrangian and Legendrian cobordisms. Funct. Anal. Appl. 14: 167–177 CrossRefGoogle Scholar
  3. 3.
    Bishop E. (1965). Differentiable manifolds in complex Euclidean spaces. Duke Math. J. 32: 1–21 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chern S.S. and Spanier E. (1951). A theorem on orientable surfaces in four-dimensional space. Comm. Math. Helv. 25: 205–209 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Costantino, F.: Stein domains and branched shadows of 4-manifolds. Preprint (2005)Google Scholar
  6. 6.
    Duchamp, T.: The classification of Legendre immersions. Preprint (1984)Google Scholar
  7. 7.
    Eliashberg Y. (1990). Topological characterization of Stein manifolds of dimension > 2. Inter. J. Math. 1: 29–46 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eliashberg Y. (1989). Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98: 623–637 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eliashberg Y. and Gromov M. (1971). Nonsingular maps of Stein manifolds. Func. Anal. Appl. 5: 82–83 Google Scholar
  10. 10.
    Eliashberg, Y., Harlamov, V.: Some remarks on the number of complex points of a real surface in a complex one. In: Proc. LITC–82, pp. 143–148 (1982)Google Scholar
  11. 11.
    Eliashberg, Y., Mishachev, N.: Introduction to the h-Principle. Graduate Studies in Mathematics, 48. Amer. Math. Soc., Providence, RI (2002)Google Scholar
  12. 12.
    Fornæss J.E. and Stout E.L. (1977). Spreading polydiscs on complex manifolds. Amer. J. Math. 99: 933–960 CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Forster O. and Ramspott K.J. (1966). Analytische Modulgarben und Endromisbündel. Invent. Math. 2: 145–170 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Forstnerič F. (1986) On totally real embeddings into \(\mathbb{C}^n\). Expo. Math. 4:243–255Google Scholar
  15. 15.
    Forstnerič F. (1992). Complex tangents of real surfaces in complex surfaces. Duke Math. J. 67: 353–376 CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Forstnerič F. (2003). Stein domains in complex surfaces. J. Geom. Anal. 13: 77–94 MathSciNetMATHGoogle Scholar
  17. 17.
    Forstnerič F. (2003). Noncritical holomorphic functions on Stein manifolds. Acta Math. 191: 143–189 CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Forstnerič F. (2004). Holomorphic submersions from Stein manifolds. Ann. Inst. Fourier 54: 1913–1942 MATHGoogle Scholar
  19. 19.
    Forstnerič F. (2006). Runge approximation on convex sets implies Oka’s property. Ann. Math. 163: 689–707 MATHGoogle Scholar
  20. 20.
    Forstnerič F. (2005). Extending holomorphic mappings from subvarieties in Stein manifolds. Ann. Inst. Fourier 55: 733–751 MATHGoogle Scholar
  21. 21.
    Forstnerič F. (2006). Holomorphic flexibility of complex manifolds. Amer. J. Math. 128: 239–270 CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Forstnerič F. and Kozak J. (2003). Strongly pseudoconvex handlebodies. J. Korean Math. Soc. 40: 727–745 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Forstnerič F. and Prezelj J. (2000). Oka’s principle for holomorphic fiber bundles with sprays. Math. Ann. 317: 117–154 CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Forstnerič, F., Stout, E.L.: A new class of polynomially convex sets in \(\mathbb{C}^2\). Ark. Mat., 29, 51–62 (1991)Google Scholar
  25. 25.
    Freedman M. (1982). The topology of four-dimensional manifolds. J. Diff. Geom. 17: 357–453 MATHGoogle Scholar
  26. 26.
    Freedman M.H., Quinn F.: Topology of 4-manifolds. Princeton Mathematical Series 39. Princeton Univ. Press Princeton NJ (1990)Google Scholar
  27. 27.
    Gompf R.E. (1998). Handlebody construction of Stein surfaces. Ann. Math. 148(2): 619–693 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gompf, R.E.: Stein surfaces as open subsets of \(\mathbb{C}^2\). J. Symplectic Geom. 3, 565–587 (2005)Google Scholar
  29. 29.
    Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, vol. 20. Amer. Math. Soc., Providence, RI (1999)Google Scholar
  30. 30.
    Grauert H. (1957). Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen. Math. Ann. 133: 139–159 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Grauert H. (1957). Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133: 450–472 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Grauert H. (1958). Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135: 263–273 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Grauert H. (1958). On Levi’s problem. Ann. Math. 68: 460–472 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Gromov M. (1969). Stable maps of foliations into manifolds. Izv. Akad. Nauk, S.S.S.R. 33: 707–734 MATHMathSciNetGoogle Scholar
  35. 35.
    Gromov M. (1973) Convex integration of differential relations, I (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 329–343 (1973). English translation in Math. USSR–Izv. 7, 329–343 (1973)Google Scholar
  36. 36.
    Gromov M. (1986). Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 9. Springer, Berlin Heidelberg New York Google Scholar
  37. 37.
    Gromov M. (1989). Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math. Soc. 2: 851–897 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Gunning R.C. and Narasimhan R. (1967). Immersion of open Riemann surfaces. Math. Ann. 174: 103–108 MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Hirsch M. (1959). Immersions of manifolds. Trans. Amer. Math. Soc. 93: 242–276 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Hörmander, L.: An Introduction to complex analysis in several variables, 3rd edn. North-Holland, Amsterdam (1990)Google Scholar
  41. 41.
    Hörmander L., Wermer J. (1968) Uniform approximations on compact sets in \(\mathbb{C}^n\). Math. Scand. 23:5–21Google Scholar
  42. 42.
    Kronheimer P.B. and Mrowka T.S. (1997). Monopoles and contact structures. Invent. Math. 130: 209–255 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Lai H.F. (1972). Characteristic classes of real manifolds immersed in complex manifolds. Trans. Amer. Math. Soc. 172: 1–33 CrossRefMathSciNetGoogle Scholar
  44. 44.
    Lefshetz, S.: Lanalysis Situs et la Géometrie Algébrique. Paris (1924)Google Scholar
  45. 45.
    Lisca P. and Matić G. (1997). Tight contact structures and Seiberg-Witten invariants. Invent. Math. 129: 509–525 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Milnor J. (1963). Morse Theory. Annals of Mathematical Studies, vol. 51. Princeton University Press, Princeton Google Scholar
  47. 47.
    Nemirovski, S., Complex analysis and differential topology on complex surfaces. Uspekhi Mat. Nauk, 54(4), 47–74 (1999). English transl. in Russian Math. Surveys 54(4), 729–752 (1999)Google Scholar
  48. 48.
    Newlander A. and Nirenberg L. (1957). Complex analytic coordinates in almost complex manifolds. Ann. Math. 65(2): 391–404 MathSciNetCrossRefGoogle Scholar
  49. 49.
    Oka K. (1939). Sur les fonctions des plusieurs variables. III: Deuxième problème de Cousin. J. Sc. Hiroshima Univ. 9: 7–19 MATHMathSciNetGoogle Scholar
  50. 50.
    Ozsváth P. and Szabo Z. (2000). The symplectic Thom conjecture. Ann. Math. 151: 93–124 MATHCrossRefGoogle Scholar
  51. 51.
    Phillips A. (1967). Submersions of open manifolds. Topology 6: 170–206 CrossRefGoogle Scholar
  52. 52.
    Rosay J.-P. (1998). A counterexample related to Hartog’s phenomenon (a question by E. Chirka). Michigan Math. J. 45: 529–535 MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Slapar M. (2004). On Stein neighborhood basis of real surfaces. Math. Z. 247: 863–879 MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Smale S. (1959). The classification of immersions of spheres in Euclidean spaces. Ann. Math. 69(2): 327–344 CrossRefMathSciNetGoogle Scholar
  55. 55.
    Stout E.L. (1971). The Theory of Uniform Algebras. Bogden&Quigley, Inc. Tarrytown-on-Hudson, New York Google Scholar
  56. 56.
    Webster S. (1984). Minimal surfaces in a Kähler surface. J. Diff. Geom. 20: 463–470 MATHMathSciNetGoogle Scholar
  57. 57.
    Weinstein, A.: Lectures on Symplectic Manifolds. Reg. Conf. Ser. Math., vol. 29, Amer. Math. Soc., Providence (1977)Google Scholar
  58. 58.
    Weinstein A. (1991). Contact surgery and symplectic handlebodies. Hokkaido Math. J. 20: 241–251 MATHMathSciNetGoogle Scholar
  59. 59.
    Whitehead, G.W.: Elements of Homotopy Theory. Graduate Texts in Mathematics, vol. 61, Berlin Heidelberg New York (1978)Google Scholar
  60. 60.
    Whitney H. (1944). The self-intersections of a smooth manifold in a 2n-space. Ann. Math. 45: 220–246 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Mathematics, Physics and MechanicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations