Mathematische Zeitschrift

, Volume 257, Issue 1, pp 7–12 | Cite as

Nonnegative curvature and cobordism type

Article

Abstract

We show that in each dimension n = 4k, k≥ 2, there exist infinite sequences of closed simply connected Riemannian n-manifolds with nonnegative sectional curvature and mutually distinct oriented cobordism type.

Keywords

Nonnegative curvature Cobordism type Finiteness theorems 

Mathematics Subject Classification (2000)

Primary 53C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson M.T. and Cheeger J. (1991). Diffeomorphism finiteness for manifolds with Ricci curvature and L n/2-norm of curvature bounded. Geom. Funct. Anal. 1: 231–252 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borel A. and Hirzebruch F. (1958). Homogeneous spaces I. Am. J. Math. 80: 458–538 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Borel A. and Hirzebruch F. (1959). Homogeneous spaces II. Am. J. Math. 81: 315–382 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheeger J. (1970). Finiteness theorems for Riemannian manifolds. Am. J. Math. 92: 61–74 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fang F. and Rong X. (2002). The second twisted Betti number and the convergence of collapsing Riemannian manifolds. Invent. Math. 150: 61–109 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gromov M. (1981). Curvature, diameter and Betti numbers. Comment. Math. Helv. 56: 179–195 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grove K. and Ziller W. (2000). Curvature and symmetry of Milnor spheres. Ann. Math. 152: 331–367 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grove K., Petersen P. and Wu J.-Y. (1991). Geometric finiteness theorems via controlled topology. Invent. Math. 99: 205–213 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kapovitch V., Petrunin A. and Tuschmann W. (2005). Nonnegative pinching, moduli spaces and bundles with infinitely many souls. J. Diff. Geom. 71: 365–383 MATHMathSciNetGoogle Scholar
  10. 10.
    Peters S. (1984). Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J.~Reine Angew. Math. 349: 77–82 MATHMathSciNetGoogle Scholar
  11. 11.
    Petrunin A. and Tuschmann W. (1999). Diffeomorphism finiteness, positive pinching and second homotopy. Geom. Funct. Anal. 9: 736–774 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Totaro B. (2003). Curvature, diameter and quotient manifolds. Math. Res. Lett. 10: 191–203 MATHMathSciNetGoogle Scholar
  13. 13.
    Wall C.T.C. (1960). Determination of the cobordism ring. Ann. Math. 72: 292–311 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FribourgFribourgSwitzerland
  2. 2.Department of MathematicsUniversity of KielKielGermany

Personalised recommendations