Mathematische Zeitschrift

, Volume 256, Issue 1, pp 99–112

SOS approximations of nonnegative polynomials via simple high degree perturbations



We show that every real polynomial f nonnegative on [−1,1]n can be approximated in the l1-norm of coefficients, by a sequence of polynomials \({\{f_{\epsilon r}\}}\) that are sums of squares (s.o.s). This complements the existence of s.o.s. approximations in the denseness result of Berg, Christensen and Ressel, as we provide a very simple and explicit approximation sequence. Then we show that if the moment problem holds for a basic closed semi-algebraic set \({K_{S} \subset \mathbb{R}^n}\) with nonempty interior, then every polynomial nonnegative on KS can be approximated in a similar fashion by elements from the corresponding preordering. Finally, we show that the degree of the perturbation in the approximating sequence depends on \({\epsilon}\) as well as the degree and the size of coefficients of the nonnegative polynomial f, but not on the specific values of its coefficients.


Real algebraic geometry Positive polynomials Sum of squares Semidefinite programming Moment problem 

Mathematics Subject Classification (1991)

12E05 12Y05 90C22 44A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berg C., Christensen J.P.R., Ressel P. (1976) Positive definite functions on Abelian semigroups. Math. Ann. 223, 253–274MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berg C. (1987) The multidimensional moment problem and semigroups. Proc. Symp. Appl. Math. 37, 110–124Google Scholar
  3. 3.
    Blekherman, G.: There are significantly more nonnegative polynomials than sums of squares (preprint)Google Scholar
  4. 4.
    Haviland E.K. (1935) On the moment problem for distribution functions in more than one dimension. Am. J. Math. 57, 562–572MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Haviland E.K. (1936) On the moment problem for distribution functions in more than one dimension II. Am. J. Math. 58, 164–168MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jacobi T., Prestel A. (2001) Distinguished representations of strictly positive polynomials. J. Reine Angew. Math. 532, 223–235MATHMathSciNetGoogle Scholar
  7. 7.
    Kuhlmann S., Marshall M. (2002) Positivity, sums of squares and the multidimensional moment problem. Trans. Am. Math. Soc. 354:4285–4301MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kuhlmann S., Marshall M., Schwartz N. (2005) Positivity, sums of squares and the multi-dimensional moment problem II. Adv. Geom. 5, 583–606MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lasserre J.B. (2001) Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lasserre J.B. (2005) S.O.S. approximation of polynomials nonnegative on a real algebraic set. SIAM J. Optim. 16, 610–628MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lasserre J.B. (2006) A sum of squares approximation of nonnegative polynomials. SIAM J. Optim. 16, 751–765MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Netzer, T.: High degree perturbations of nonnegative polynomials. Diploma Thesis, Department of Mathematics and Statistics, University of Konstanz, Germany, June 2005Google Scholar
  13. 13.
    Nussbaum A.E. (1966) Quasi-analytic vectors. Ark. Mat. 6, 179–191MathSciNetGoogle Scholar
  14. 14.
    Parrilo P.A. (2003) Semidefinite programming relaxations for semialgebraic problems. Math. Progr. Ser. B 96, 293–320MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Prestel A., Delzell C.N. (2001) Positive Polynomials. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  16. 16.
    Putinar M. (1993) Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42:969–984MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Scheiderer C. (2003) Positivity and sums of squares: a guide to some recent results. Department of Mathematics, University of Duisburg, GermanyGoogle Scholar
  18. 18.
    Schmüdgen K. (1991) The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schweighofer M. (2005) Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15, 805–825MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vandenberghe L., Boyd S. (1996) Semidefinite programming. SIAM Rev 38, 49–95MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.LAAS-CNRS and Institute of MathematicsLAASToulouse cedex 4France
  2. 2.Universität Konstanz, Fachbereich Mathematik und StatistikKonstanzGermany

Personalised recommendations