Mathematische Zeitschrift

, Volume 253, Issue 3, pp 607–622 | Cite as

On the mean square of standard L-functions attached to Ikeda lifts

Article

Abstract

By using estimates on the frequency of large values of the Riemann zeta-function and modular L-functions attached to the full modular group SL(2, ℤ), we prove sharp upper and lower estimates of the mean square of standard L-functions attached to Siegel cusp forms which are Ikeda lifts, on boundaries and the central line of the critical strip. The mean square of spinor L-functions attached to Saito-Kurokawa lifts is also studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duke, W., Howe, R., Li, J.-S.: Estimating Hecke eigenvalues of Siegel modular forms. Duke Math. J. 67, 219–240 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Math. Vol. 55. Birkhäuser, 1985Google Scholar
  3. 3.
    Good, A.: Ein Mittelwertsatz für Dirichletreihen, die Modulformen assoziiert sind. Comment. Math. Helv. 49, 35–47 (1974)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29, 278–295 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ikeda, T.: On the lifting of elliptic modular forms to Siegel cusp forms of degree 2n. Ann. of Math. 154, 641–681 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ivić, A.: The Riemann Zeta-Function. Wiley, 1985Google Scholar
  7. 7.
    Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms. In: Bombieri E., et al. (eds) Proceedings of the Amalfi conference on analytic number theory. Univ. di Salerno, 231–246, 1992Google Scholar
  8. 8.
    Ivić, A.: On mean values of some zeta-functions in the critical strip. J. Théorie des Nombres de Bordeaux 15, 163–178 (2003)CrossRefGoogle Scholar
  9. 9.
    Jutila, M.: Zero-density estimates for L-functions. Acta Arith. 32, 52–62 (1977)Google Scholar
  10. 10.
    Kohnen, W., Sankaranarayanan, A., Sengupta, J.: The quadratic mean of automorphic L-functions In: Böcherer S., et al. (eds) Automorphic Forms and Zeta Functions. Proceedings of the Conference in Memory of Tsuneo Arakawa. World Scientific, 262–279, 2006Google Scholar
  11. 11.
    Kühleitner, M., Nowak, W.G.: The average number of solutions of the Diophantine equation U 2+V 2=W 3 and related arithmetic functions. Acta Math. Hungar. 104, 225–240 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Matsumoto, K.: Liftings and mean value theorems for automorphic L-functions. Proc. London Math. Soc., (3) 90, 297–320 (2005)Google Scholar
  13. 13.
    Murakawa, K.: Relations between symmetric power L-functions and spinor L-functions attached to Ikeda lifts. Kodai Math. J. 25, 61–71 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Perelli, A.: General L-functions. Ann. Mat. Pura Appl. 130, 287–306 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ramachandra, K., Sankaranarayanan, A.: On an asymptotic formula of Srinivasa Ramanujan. Acta Arith. 109, 349–357 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sankaranarayanan, A.: Fundamental properties of symmetric square L-functions I. Illinois J. Math. 46, 23–43 (2002)MathSciNetGoogle Scholar
  17. 17.
    Schmidt, R.: On the spin L-function of Ikeda's lifts. Comment. Math. Univ. St. Pauli 52, 1–46 (2003)MathSciNetGoogle Scholar
  18. 18.
    Titchmarsh, E.C.: The Theory of Functions. 2nd ed., Oxford, 1939Google Scholar
  19. 19.
    Titchmarsh, E.C.: The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  2. 2.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations