Mathematische Zeitschrift

, Volume 252, Issue 4, pp 883–897 | Cite as

The alternative Dunford-Pettis property on projective tensor products

  • Antonio M. PeraltaEmail author
  • Ignacio Villanueva


Tensor Product Projective Tensor Projective Tensor Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acosta, M.D., Peralta, A.M.: An alternative Dunford-Pettis property for JB*-triples. Quart. J. Math. Oxford Ser. 52, 391–401 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Becerra Guerrero, J., López Pérez, G., Peralta, A.M., Rodríguez Palacios, A.: Relatively weakly open sets in closed balls of Banach spaces, and real JB*-triples of finite rank. Math. Ann. 330, 45–58 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Becerra Guerrero, J., Peralta, A.M.: The Dunford-Pettis and the Kadec-Klee properties on tensor products of JB*-triples, Math. Z. 251, 117–130 (2005)zbMATHGoogle Scholar
  4. 4.
    Bombal, F., Villanueva, I.: On the Dunford-Pettis property of the tensor product of C(K) spaces. Proc. Amer. Math. Soc. 129(5), 1359–1363 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bunce, L.J., Chu, Ch.-H.: Dual spaces of JB*-triples and the Radon-Nikodým property. Math. Z. 208(2), 327–334 (1991)MathSciNetGoogle Scholar
  6. 6.
    Bunce, L.J., Chu, Ch.-H.: Compact operations, multipliers and Radon-Nikodým property in JB*-triples. Pacific J. Math. 153(2), 249–265 (1992)MathSciNetGoogle Scholar
  7. 7.
    Bunce, L.J., Peralta, A.M.: The alternative Dunford-Pettis property in C*-algebras and von Neumann preduals. Proc. Amer. Math. Soc. 131(4), 1251–1255 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cabello, F., García, R.: The bidual of a tensor product of Banach spaces. To appear in Rev. Mat. Iber.Google Scholar
  9. 9.
    Cabello, F., Pérez-García, D., Villanueva, I.: Unexpected subspaces of tensor products, preprint 2004Google Scholar
  10. 10.
    Chu, Ch.-H., Iochum, B.: On the Radon-Nikodým property in Jordan triples, Proc. Amer. Math. Soc. 99(3), 462–464 (1987)CrossRefGoogle Scholar
  11. 11.
    Chu, Ch.-H., Iochum, B.: Complementation of Jordan triples in von Neumann algebras. Proc. Amer. Math. Soc. 108(1), 19–24 (1990)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Defant, A., Floret, K.: Tensor norms and operator ideals, North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam, 1993Google Scholar
  13. 13.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Univ. Press, 1995Google Scholar
  14. 14.
    Dineen, S.: The second dual of a JB*-triple system, In: J. Múgica) (ed.) Complex analysis, functional analysis and approximation theory , pp. 67–69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986Google Scholar
  15. 15.
    Freedman, W.: An alternative Dunford-Pettis property. Studia Math. 125, 143–159 (1997)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Friedman, Y., Russo, B.: Structure of the predual of a JBW*-triple. J. Reine u. Angew. Math. 356, 67–89 (1985)zbMATHGoogle Scholar
  17. 17.
    González, M., Gutiérrez, J.: The Dunford-Pettis property on tensor products. Math. Proc. Camb. Phil. Soc. 131, 185–192 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Grothendieck, A.: Sur les applications lineaires faiblement compactes d'espaces du type C(K). Canad. J. Math. 5, 129–173 (1953)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Horn, G.: Characterization of the predual and ideal structure of a JBW*-triple. Math. Scand. 61(1), 117–133 (1987)MathSciNetGoogle Scholar
  20. 20.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983Google Scholar
  21. 21.
    Kaup, W.: Algebraic Characterization of symmetric complex Banach manifolds.Math. Ann. 228, 39–64 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kaup, W.: A Riemann Mapping Theorem for bounded symmentric domains in complex Banach spaces. Math. Z. 183, 503–529 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Pełczyński, A., Semadeni, Z.: Spaces of continuous functions. III. Spaces C(Ω ) for Ω without perfect subsets. Studia Math. 18, 211–222 (1959)zbMATHGoogle Scholar
  24. 24.
    Semadeni, Z.: Banach spaces of continuous functions. Vol. I. Monografie Matematyczne, Tom 55. PWN—Polish Scientific Publishers, Warsaw, 1971Google Scholar
  25. 25.
    Stegall, C.: Duals of certain spaces with the Dunford-Pettis property. Notices Amer. Math. Soc. 19, A-799 (1972)Google Scholar
  26. 26.
    Talagrand, M.: La propriété de Dunford-Pettis dans Open image in new window(K, E) et L 1(E). Israel J. Math. 44(4), 317–321 (1983)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Análisis Matemático, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations