Deformation theory of representable morphisms of algebraic stacks
Article
First Online:
- 201 Downloads
- 15 Citations
Abstract
We study the relationship between the deformation theory of representable 1-morphisms between algebraic stacks and the cotangent complex defined by Laumon and Moret-Bailly.
Keywords
Deformation Theory Algebraic Stack Cotangent Complex
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Aoki, M.: Deformation theory of algebraic stacks. Comp. Math. 141, 19–34 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics 269, 270, 305, Springer-Verlag, Berlin 1971Google Scholar
- 4.Behrend, K., Fantechi, B.: The intrinsic normal cone. Inv. Math. 128, 45–88 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–78 (1974)zbMATHMathSciNetGoogle Scholar
- 6.Demazure, M., Grothendieck, A.: Schémas en groupes. Lecture Notes in Mathematics 151, 152, 153, Springer-Verlag, Berlin 1970Google Scholar
- 7.Dieudonné, J., Grothendieck, A.: Éléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967).Google Scholar
- 8.Grothendieck, A.: Revêtements Étales et Groupe Fondamental. Lecture Notes in Mathematics 224, Springer–Verlag, Berlin 1971Google Scholar
- 9.Grothendieck, A.: Catégories cofibrées additives et Complexe cotangent relatif. Lecture Notes in Mathematics 79, Springer–Verlag, Berlin 1968Google Scholar
- 10.Illusie, L.: Complexe cotangent et déformations. I. Lecture Notes in Mathematics 239, Springer-Verlag, Berlin 1971Google Scholar
- 11.Illusie, L.: Complexe cotangent et déformations. II. Lecture Notes in Mathematics 283, Springer-Verlag, Berlin 1972Google Scholar
- 12.Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics 203, Springer-Verlag, Berlin 1971Google Scholar
- 13.Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergebnisse der Mathematik 39, Springer-Verlag, Berlin 2000Google Scholar
- 14.Olsson, M.: The logarithmic cotangent complex. preprint 2002Google Scholar
- 15.Olsson, M.: Sheaves on Artin stacks. preprint 2005Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2006