Mathematische Zeitschrift

, Volume 251, Issue 3, pp 509–521 | Cite as

Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces

Article

Abstract

We show that any pointwise multiplier for BMO(ℝn) generates a function p from the class Open image in new window(ℝn) of those functions for which the Hardy-Littlewood maximal operator is bounded on the variable Lp space. In particular, this gives a positive answer to Diening's conjecture saying that there are discontinuous functions which nevertheless belong to Open image in new window(ℝn).

Mathematics Subject Classification (2000)

42B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, New York, 1988Google Scholar
  2. 2.
    Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator on variable Lp spaces. Preprint is available from http://www.iam.na.cnr.it/rapporti/2004/RT281_04.pdf
  3. 3.
    Coifman, R.R., Rochberg, R.: Another characterization of BMO. Proc. Amer. Math. Soc. 79, 249–254 (1980)Google Scholar
  4. 4.
    Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003); 29, 247–249 (2004)Google Scholar
  5. 5.
    Diening, L.: Maximal function on generalized Lebesgue spaces Lp(·). Math. Inequal. Appl. 7(2), 245–253 (2004)Google Scholar
  6. 6.
    Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität Freiburg. Preprint no. 21, 2003Google Scholar
  7. 7.
    García-Cuerva, J., Rubio de Francia, J.: Weighted norm inequalities and related topics. North-Holland Math. Studies 116, North-Holland, Amsterdam, 1985Google Scholar
  8. 8.
    Janson, S.: On functions with conditions on the mean oscillation. Ark. Mat. 14, 189–196 (1976)Google Scholar
  9. 9.
    Kováčik, O., Rákosník, J.: On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J. 41(116)(4), 592–618 (1991)Google Scholar
  10. 10.
    Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983Google Scholar
  11. 11.
    Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Japan 37, 207–218 (1985)Google Scholar
  12. 12.
    Nekvinda, A.: Hardy-Littlewood maximal operator on Lp(x)(ℝn). Math. Inequal. Appl. 7(2), 255–265 (2004)Google Scholar
  13. 13.
    Nekvinda, A.: A note on maximal operator on Open image in new window and on Lp(x)(ℝ). Faculty of Civil Engeneering, Czech Technical University in Prague. Preprint no. 1, 2004Google Scholar
  14. 14.
    Pick, L., Růžička, M.: An example of a space of Lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19(4), 369–371 (2001)CrossRefGoogle Scholar
  15. 15.
    Spanne, S.: Some function spaces defined using the mean oscillation over cubes. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. 19, 593–608 (1965)Google Scholar
  16. 16.
    Stegenga, D.A.: Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation. Am. J. Math. 98, 573–589 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations