Advertisement

Mathematische Zeitschrift

, Volume 251, Issue 2, pp 393–414 | Cite as

Riemann existence theorems of Mumford type

  • Patrick Erik BradleyEmail author
Article

Abstract

Riemann Existence Theorems for Galois covers of Mumford curves by Mumford curves are stated and proven. As an application, all finite groups are realised as full automorphism groups of Mumford curves in characteristic zero.

Keywords

Automorphism Group Finite Group Existence Theorem Characteristic Zero Galois Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andre, Y.: Period mappings and differential equations. From Open image in new window (with appendices by F. Kato and N. Tsuzuki). Math. Soc. Japan Memoirs, 2003Google Scholar
  2. 2.
    Berkovich, V. G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs 33. AMS, 1990Google Scholar
  3. 3.
    Berkovich, V. G.: Étale cohomology for non-Archimedean analytic spaces. Publ. Math. I.H.E.S. 78, 5–161 (1993)Google Scholar
  4. 4.
    Berkovich, V. G.: Smooth p-adic analytic spaces are locally contractible. Inventiones Mathematicae 137(1), 1–84 (1999)CrossRefGoogle Scholar
  5. 5.
    Bertin, J.: Compactifications des schémas de Hurwitz. C. R. Acad. Sci. Paris, L 322(Série 1), 1063–1066 (1996)Google Scholar
  6. 6.
    Bradley, P. E.: p-adische Hurwitzräume. Dissertation, Universität Karlsruhe, 2002Google Scholar
  7. 7.
    Bradley, P.E., Kato, F., Voskuil, H.: The Classification of p-adic Discrete Subgroups of PGL2. In preparationGoogle Scholar
  8. 8.
    De J., A. J.: Étale fundamental groups of non-archimedean analytic spaces. Compositio Mathematicae 97, 89–118 (1995)Google Scholar
  9. 9.
    Fried, M.: Introduction to MODULAR TOWERS. In: Recent Developments in the Inverse Galois Problem. Contemp. Math. 186, Seattle, 1993, pp. 91–171Google Scholar
  10. 10.
    Harbater, D.: Galois coverings of the arithmetic line in Number Theory: New York 1984–85. LNM 1240, Springer, 1987, pp. 165–195Google Scholar
  11. 11.
    Herrlich, F.: Endlich erzeugbare p-adische diskontinuierliche Gruppen. Archiv der Mathematik 35, 505–515 (1980)CrossRefGoogle Scholar
  12. 12.
    Herrlich, F.: p-adisch discontinuierlich einbettbare Graphen von Gruppen. Archiv der Mathematik 39, 204–216 (1982)CrossRefGoogle Scholar
  13. 13.
    Herrlich, F.: Nichtarchimedische Teichmüllerräume. Habilitation thesis, Bochum, 1985Google Scholar
  14. 14.
    Herrlich, F.: Nichtarchimedische Teichmüllerräume. Indagationes Mathematicae 49, 149–169 (1987)Google Scholar
  15. 15.
    Herrlich F.: On the stratification of the moduli space of Mumford curves. Groupe d’etude d’Analyse ultrametrique 11e année 1983/84(18), 1–10 (1984)Google Scholar
  16. 16.
    Magaard, K., Shaska, T., Shpectorov, S., Völklein, H.: The locus of curves with prescribed automorphism group. RIMS, Kyoto Technical Report series, Communications on Arithmetic Fundamental Groups and Galois Theory, H. Nakamura (ed.), 2002Google Scholar
  17. 17.
    Kato, F.: p-adic Schwarzian triangle groups of Mumford type. Preprint, math.AG/9908174, 1999Google Scholar
  18. 18.
    Kato, F.: Non-Archimedean orbifolds covered by Mumford curves. J. Algebraic Geometry 14(2005), 1–34.Google Scholar
  19. 19.
    Khramtsov, D.G.: Finite graphs of groups with isomorphic fundamental groups. Algebra Logic 30(5), 389–409 (1991); Translation from Algebra Logika 30(5), 595–623 (1991)CrossRefGoogle Scholar
  20. 20.
    Van Der Put, M., Voskuil, H.: Mumford coverings of the projective line. Preprint, 2001Google Scholar
  21. 21.
    Van Der Put, M., Voskuil, H.: Mumford coverings of the projective line. Archiv der Mathematik 80, 98–105 (2003)CrossRefGoogle Scholar
  22. 22.
    Wewers, S.: Construction of Hurwitz spaces. Dissertation, Universität-Gesamthochschule Essen, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für, Industrielle BauproduktionUniversität KarlsruheKarlsruheGermany

Personalised recommendations