Mathematische Zeitschrift

, Volume 251, Issue 2, pp 333–358 | Cite as

On projective and injective polynomial modules

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.H.: A sum formula for tilting filtrations. J. Pure Appl. Algebra 152, 17–40 (2000)CrossRefGoogle Scholar
  2. 2.
    Brundan, J.: Modular branching rules and the Mullineux map for Hecke algebras of type A. Proc. London Math. Soc. 77, 551–581 (1988)CrossRefGoogle Scholar
  3. 3.
    Cassels, J.W.S.: Local Fields. LMS Student Texts 3, Cambridge University Press, 1986Google Scholar
  4. 4.
    Cox, A.G.: The Blocks of the q-Schur algebra. J. Algebra 207, 306–325 (1998)CrossRefGoogle Scholar
  5. 5.
    Dipper, R., Donkin, S.: Quantum GLn. Proc. London Math. Soc. 63, 165–211 (1991)Google Scholar
  6. 6.
    Donkin, S.: Rational Representations of Algebraic Groups: Tensor Products and Filtrations. Lecture Notes in Mathematics 1140, Springer, 1985Google Scholar
  7. 7.
    Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212, 39–60 (1993)Google Scholar
  8. 8.
    Donkin, S.: On Schur algebras and related algebras IV. The blocks of the Schur algebras. J. Algebra. 168, 400–429 (1994)Google Scholar
  9. 9.
    Donkin, S.: The q-Schur algebra. LMS Lecture Note Series 253, Cambridge University Press, 1998Google Scholar
  10. 10.
    Donkin, S.: Standard homological properties for quantum GLn. J. Algebra 181, 235–266 (1996)CrossRefGoogle Scholar
  11. 11.
    Donkin, S.: Tilting modules for algebraic groups and finite dimensional algebras, in A Handbook of Tilting Theory. D. Happel, H. Krause (ed.), CUP 2005Google Scholar
  12. 12.
    Green, J.A.: Polynomial representations of GLn. Lecture Notes in Mathematics 830, Springer, 1980Google Scholar
  13. 13.
    Humphreys, J.E., Jantzen, J.C.: Blocks and indecomposable modules for semisimple algebraic groups. J. Algebra 54, 494–503 (1978)CrossRefGoogle Scholar
  14. 14.
    James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications 16, Addison–Wesley, 1981Google Scholar
  15. 15.
    Jantzen, J.C.: Representations of Algebraic groups. 2nd ed., Mathematical Surveys and Monographs Volume 107, AMS, 2003Google Scholar
  16. 16.
    Mullineux, G.: Bijections of p-regular partitions and p-modular irreducibles of the symmetric groups. J. London Math. Soc. (2) 20(1), 60–66 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.School of Mathematical SciencesQueen Mary, University of LondonLondonEngland

Personalised recommendations