Mathematische Zeitschrift

, Volume 251, Issue 2, pp 293–311 | Cite as

Energy concentration for almost harmonic maps and the Willmore functional

Article

Abstract

Let Ω be an open domain in ℝ3 or ℝ4 and N a smooth, compact Riemannian manifold. We consider the Dirichlet energy E(u) for maps u:Ω→N and its negative L2-gradient, the tension field τ(u). We study sequences of maps ui:Ω→N with Open image in new window If the maps are sufficiently regular, we find strong H1-subconvergence away from a generalized submanifold in Ω. If the limit map is regular, too, we can estimate a Willmore-type energy of this generalized submanifold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allard, W. K.: On the first variation of a varifold. Ann. of Math. (2) 95, 417–491 (1972)Google Scholar
  2. 2.
    Ambrosio, L., Soner, H. M.: A measure-theoretic approach to higher codimension mean curvature flows. Ann. Scuola Norm. Superscript. Pisa Cl. Sci. (4) 25, 27–49 (1997)Google Scholar
  3. 3.
    Ding, W., Li, J., Li, W.: Nonstationary weak limit of a stationary harmonic map sequence. Comm. Pure Appl. Math. 56, 270–277 (2003)CrossRefGoogle Scholar
  4. 4.
    Ding, W., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3, 543–554 (1995)Google Scholar
  5. 5.
    Federer, H.: Geometric measure theory. Springer-Verlag, New York, 1969Google Scholar
  6. 6.
    Giaquinta, M., Modica, G.: Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311/312, 145–169 (1979)Google Scholar
  7. 7.
    Jost, J.: Two-dimensional geometric variational problems. John Wiley & Sons, Chichester, 1991Google Scholar
  8. 8.
    Li, J., Tian, G.: A blow-up formula for stationary harmonic maps. Internat. Math. Res. Notices (1998), pp 735–755Google Scholar
  9. 9.
    Lin, F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2) 149, 785–829 (1999)Google Scholar
  10. 10.
    Lin, F.-H.: Varifold type theory for Sobolev mappings. First International Congress of Chinese Mathematicians (Beijing, 1998), Amer. Math. Soc., Providence, 2001, pp 423–430Google Scholar
  11. 11.
    Lin, F.-H., Rivière, T.: Energy quantization for harmonic maps. Duke Math. J. 111, 177–193 (2002)CrossRefGoogle Scholar
  12. 12.
    Moser, R.: Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps. Math. Z. 243, 263–289 (2003)CrossRefGoogle Scholar
  13. 13.
    Moser, R.: Stationary measures and rectifiability. Calc. Var. Partial Differential Equations 17, 357–368 (2003)CrossRefGoogle Scholar
  14. 14.
    Moser, R.: On the structure of energy concentration measures. To appear in Calc. Var., DOI 10.1007/s00526-005-0340-y (2005)Google Scholar
  15. 15.
    Price, P.: A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43, 131–166 (1983)CrossRefGoogle Scholar
  16. 16.
    Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3, 297–315 (1995)Google Scholar
  17. 17.
    Simon, L.: Lectures on geometric measure theory. Australian National University Centre for Mathematical Analysis, Canberra, 1983Google Scholar
  18. 18.
    Simon, L.: Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1, 281–326 (1993)Google Scholar
  19. 19.
    Willmore, T. J.: Total curvature in Riemannian geometry. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1982Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Courant InstituteNew YorkUSA

Personalised recommendations