Mathematische Zeitschrift

, Volume 250, Issue 3, pp 539–571

Atomic and molecular decompositions of anisotropic Besov spaces



In this work we develop the theory of weighted anisotropic Besov spaces associated with general expansive matrix dilations and doubling measures with the use of discrete wavelet transforms. This study extends the isotropic Littlewood- Paley methods of dyadic φ-transforms of Frazier and Jawerth [19, 21] to non-isotropic settings.

Several results of isotropic theory of Besov spaces are recovered for weighted anisotropic Besov spaces. We show that these spaces are characterized by the magnitude of the φ-transforms in appropriate sequence spaces. We also prove boundedness of an anisotropic analogue of the class of almost diagonal operators and we obtain atomic and molecular decompositions of weighted anisotropic Besov spaces, thus extending isotropic results of Frazier and Jawerth [21].

Mathematics Subject Classification (2000):

Primary 42B25 42B35 42C40 Secondary 46E35 47B37 47B38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral representations of functions and imbedding theorems. Vol. I and II, V. H. Winston & Sons, Washington, D.C., 1979Google Scholar
  2. 2.
    Bownik, M.: A characterization of affine dual frames in L 2(ℝn). Appl. Comput. Harmon. Anal. 8, 203–221 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), 122pp (2003)MathSciNetGoogle Scholar
  4. 4.
    Bownik, M., Ho, K.-P.: Atomic and Molecular Decompositions of Anisotropic Triebel-Lizorkin Spaces. Trans. Am. Math. Soc. (to appear)Google Scholar
  5. 5.
    Buckley, S.M., MacManus, P.: Singular measures and the key of G. Publ. Mat. 44, 483–489 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Bui, H.-Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12, 581–605 (1982)MathSciNetMATHGoogle Scholar
  7. 7.
    Bui, H.-Q.: Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J. Funct. Anal. 55, 39–62 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bui, H.-Q.: Weighted Young’s inequality and convolution theorems on weighted Besov spaces. Math. Nachr. 170, 25–37 (1994)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bui, H.-Q., Paluszyński, M., Taibleson, M.H.: A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119, 219–246 (1996)MathSciNetMATHGoogle Scholar
  10. 10.
    Bui, H.-Q., Paluszyński, M., Taibleson, M.H.: Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q<1. J. Fourier Anal. Appl. 3, 837–846 (1997)Google Scholar
  11. 11.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal function associated with a distribution. Adv. Math. 16, 1–64 (1975)MATHCrossRefGoogle Scholar
  12. 12.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal function associated with a distribution II. Adv. Math. 24, 101–171 (1977)MATHCrossRefGoogle Scholar
  13. 13.
    Coifman, R.R.: A real variable characterization of H p. Studia Math. 51, 269–274 (1974)MathSciNetMATHGoogle Scholar
  14. 14.
    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dintelmann, P.: Classes of Fourier multipliers and Besov-Nikolskij spaces. Math. Nachr. 173, 115–130 (1995)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dintelmann, P.: On Fourier multipliers between Besov spaces with 0<p 0≤ min {1,p 1}. Anal. Math. 22, 113–123 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 209, 83–113 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. Princeton University Press, Princeton, N.J., 1982Google Scholar
  19. 19.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana U. Math. J. 34, 777–799 (1985)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Frazier, M., Jawerth, B.: The φ-transform and applications to distribution spaces. Lecture Notes in Math., 1302, Springer, Berlin Heidelberg, 1988, pp. 223–246Google Scholar
  21. 21.
    Frazier, M., Jawerth, B.: A Discrete Transform and Decomposition of Distribution Spaces. J. Funct. Anal. 93, 34–170 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Ser., 79, American Math. Society, 1991Google Scholar
  23. 23.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland, 1985Google Scholar
  24. 24.
    Lemarié-Rieusset, P.-G.: Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolutions. Rev. Mat. Iberoamericana 10, 283–347 (1994)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lemarié-Rieusset, P.-G.: Recent developments in the Navier-Stokes problem. Chapman & Hall/CRC, 2002Google Scholar
  26. 26.
    Nazarov, F., Treil, S.: The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. Algebra i Analiz 8, 32–162 (1996)MATHGoogle Scholar
  27. 27.
    Peetre, J.: New thoughts on Besov spaces. Duke University Mathematics Series, No. 1, Mathematics Department, Duke University, Durham, N.C., 1976Google Scholar
  28. 28.
    Plancherel, M., Pólya, G.: Fonctions entières et intégrales de Fourier multiples. Comment. Math. Helv. 9, 224–248 (1937)MATHCrossRefGoogle Scholar
  29. 29.
    Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355, 273–314 (2003)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Rychkov, V.S.: On a theorem of Bui, Paluszyński, and Taibleson. Proc. Steklov Inst. Math. 227, 280–292 (1999)MathSciNetGoogle Scholar
  31. 31.
    Rychkov, V.S.: Littlewood-Paley theory and function spaces with A loc p weights. Math. Nachr. 224, 145–180 (2001)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. John Wiley & Sons, 1987Google Scholar
  33. 33.
    Volberg, A.: Matrix A p weights via S-functions. J. Am. Math. Soc. 10, 445–466 (1997)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Triebel, H.: Theory of Function Spaces. Monographs in Math., 78, Birkhäuser, Basel, 1983Google Scholar
  35. 35.
    Triebel, H.: Theory of function spaces II. Monographs in Math., 84, Birkhäuser, Basel, 1992Google Scholar
  36. 36.
    Triebel, H.: Wavelet bases in anisotropic function spaces. Preprint, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations