Mathematische Zeitschrift

, Volume 249, Issue 4, pp 783–795 | Cite as

Non-degenerate maps and sets

  • Jörg Winkelmann


We construct certain non-degenerate maps and sets, mainly in the complex-analytic category.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author wants to thank the Korea Institute for Advanced Study (KIAS) in Seoul. The research for this article was partially done during the stay of the author at this institute.


  1. 1.
    Ahlfors, L.: Open Riemann surfaces and extremal problems on compact subregions. Comment. Math. Helv. 24, 100–134 (1950)zbMATHGoogle Scholar
  2. 2.
    Bell, S.: The Cauchy transform, potential theory and conformal mapping. CRC Press, 1992Google Scholar
  3. 3.
    Bierstone, E., Millman, P.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Buzzard, G., Lu, S.: Algebraic surfaces holomorphically dominable by Open image in new window Invent. Math. 139(3), 617–659 (2000)Google Scholar
  5. 5.
    Campana, F.: Special Varieties and Classification Theory. In preparationGoogle Scholar
  6. 6.
    Fornaess, J.E., Stout, E.L.: Spreading polydiscs on complex manifolds. Am. J. Math. 99(5), 933–960 (1977)zbMATHGoogle Scholar
  7. 7.
    Fornaess, J.E., Stout, E.L.: Polydiscs in complex manifolds. Math. Ann. 227(2), 145–153 (1977)zbMATHGoogle Scholar
  8. 8.
    Fornaess, J.E., Stout, E.L.: Regular holomorphic images of balls. Ann. Inst. Fourier (Grenoble) 32(2), 23–36 (1982)zbMATHGoogle Scholar
  9. 9.
    Grauert, H.: On Levi’s problem and the imbedding of real analytic manifolds. Ann. Math. 68, 460–472 (1958)zbMATHGoogle Scholar
  10. 10.
    Hironaka, H.: Desingularization of complex-analytic varieties. Actes du Congrès International des Mathématiciens (Nice, 1970). Gauthier-Villers, Paris 1971, pp. 7–9Google Scholar
  11. 11.
    Hirsch, M.W.: Differential Topology. Corrected Reprint, Springer GTM 33, 1994Google Scholar
  12. 12.
    Kobayashi, S.: Hyperbolic Manifolds and Holomorphic Mappings. Dekker, 1970Google Scholar
  13. 13.
    Kobayashi, S.: Hyperbolic Complex Spaces. GTM 318, Springer, 1998Google Scholar
  14. 14.
    Narasimhan, R.: Analysis on Real and Complex Manifolds (Third Printing). North-Holland, Amsterdam, 1985Google Scholar
  15. 15.
    Remmert, R.: Funktionentheorie 2. Grundwissen Mathematik, Springer, 1995Google Scholar
  16. 16.
    Rosay, J.P., Rudin, W.: Holomorphic Maps from Open image in new window Trans. AMS 310, 47–86 (1988)Google Scholar
  17. 17.
    Tognoli, A.: Approximation theorems in real analytic and algebraic geometry. In: F. Broglia (ed.), Lectures in Real Geometry (Madrid), de Gruyter 1994, pp. 113–166Google Scholar
  18. 18.
    Winkelmann, J.: Large Discrete sets in Stein manifolds. Math. Z. 236, 883–901 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Institut Elie Cartan (Mathématiques)Université Henri Poincaré Nancy 1Vandœuvre-les-Nancy CedexFrance

Personalised recommendations