Mathematische Zeitschrift

, Volume 249, Issue 4, pp 713–730 | Cite as

On the Lie theory of p-adic analytic groups



The aim of this paper is to fill a small, but fundamental, gap in the theory of p-adic analytic groups. We illustrate by example that the now standard notion of a uniformly powerful pro-p group is more restrictive than Lazard’s concept of a saturable pro-p group. For instance, the Sylow-pro-p subgroups of many classical groups are saturable, but need not be uniformly powerful. Extending work of Ilani, we obtain a correspondence between subgroups and Lie sublattices of saturable pro-p groups. This leads to applications, for instance, in the subject of subgroup growth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Lie groups and Lie algebras. Part I: Chapters 1–3. Hermann, Paris, 1975Google Scholar
  2. 2.
    Dixon, J., du Sautoy, M., Mann, A., Segal, D.: Analytic pro-p groups. London Mathematical Society Lecture Note Series 157, Cambridge University Press, Cambridge, 1991Google Scholar
  3. 3.
    Dixon, J., du Sautoy, M., Mann, A., Segal, D.: Analytic pro-p groups. 2nd ed. Cambridge University Press, Cambridge, 1999Google Scholar
  4. 4.
    du Sautoy, M.: Finitely generated groups, p-adic analytic groups and Poincaré series. Ann. Math. 137, 639–670 (1993)Google Scholar
  5. 5.
    Hall, P.: On a theorem of Frobenius. Proc. Lond. Math. Soc. 40, 468–501 (1935/36)Google Scholar
  6. 6.
    Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York, 1967Google Scholar
  7. 7.
    Ilani, I.: Analytic pro-p groups and their Lie algebras. J. Algebra 176, 34–58 (1995)CrossRefGoogle Scholar
  8. 8.
    Klaas, G., Leedham-Green, C.R., Plesken, W.: Linear pro-p-groups of finite width. Lecture Notes in Mathematics 1674. Springer Verlag, Berlin-Heidelberg, 1997Google Scholar
  9. 9.
    Klopsch, B.: Zeta functions related to the pro-p group SL11p). Math. Proc. Camb. Phil. Soc. 135, 45–57 (2003)CrossRefGoogle Scholar
  10. 10.
    Klopsch, B.: Pro-p groups with linear subgroup growth. Math. Z. 245, 335–370 (2003)CrossRefGoogle Scholar
  11. 11.
    Klopsch, B.: Groups with less than n subgroups of index n. To appearGoogle Scholar
  12. 12.
    Lazard, M.: Groupes analytiques p-adiques. Publ. Math. IHÉS 26, 389–603 (1965)Google Scholar
  13. 13.
    Lubotzky, A., Segal, D.: Subgroup Growth. Progress in Mathematics 212. Birkhäuser Verlag, Basel-Boston-Berlin, 2003Google Scholar
  14. 14.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Interscience, New York, 1966Google Scholar
  15. 15.
    Mann, A.: The power structure of p-groups. I. J. Algebra 42, 121–135 (1976)CrossRefGoogle Scholar
  16. 16.
    Shalev, A.: Groups whose subgroup growth is less than linear. Int. J. Algebra Comput. 7, 77–91 (1997)CrossRefGoogle Scholar
  17. 17.
    Shalev, A.: Asymptotic group theory. Notices Am. Math. Soc. 48, 383–389 (2001)Google Scholar
  18. 18.
    Souvignier, B.: Erweiterungen von analytischen pro-p Gruppen mit endlichen Gruppen. Ph.D. Thesis, RWTH Aachen, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematisches InstitutHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations