Mathematische Zeitschrift

, Volume 249, Issue 4, pp 713–730 | Cite as

On the Lie theory of p-adic analytic groups

Article

Abstract.

The aim of this paper is to fill a small, but fundamental, gap in the theory of p-adic analytic groups. We illustrate by example that the now standard notion of a uniformly powerful pro-p group is more restrictive than Lazard’s concept of a saturable pro-p group. For instance, the Sylow-pro-p subgroups of many classical groups are saturable, but need not be uniformly powerful. Extending work of Ilani, we obtain a correspondence between subgroups and Lie sublattices of saturable pro-p groups. This leads to applications, for instance, in the subject of subgroup growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Lie groups and Lie algebras. Part I: Chapters 1–3. Hermann, Paris, 1975Google Scholar
  2. 2.
    Dixon, J., du Sautoy, M., Mann, A., Segal, D.: Analytic pro-p groups. London Mathematical Society Lecture Note Series 157, Cambridge University Press, Cambridge, 1991Google Scholar
  3. 3.
    Dixon, J., du Sautoy, M., Mann, A., Segal, D.: Analytic pro-p groups. 2nd ed. Cambridge University Press, Cambridge, 1999Google Scholar
  4. 4.
    du Sautoy, M.: Finitely generated groups, p-adic analytic groups and Poincaré series. Ann. Math. 137, 639–670 (1993)Google Scholar
  5. 5.
    Hall, P.: On a theorem of Frobenius. Proc. Lond. Math. Soc. 40, 468–501 (1935/36)Google Scholar
  6. 6.
    Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York, 1967Google Scholar
  7. 7.
    Ilani, I.: Analytic pro-p groups and their Lie algebras. J. Algebra 176, 34–58 (1995)CrossRefGoogle Scholar
  8. 8.
    Klaas, G., Leedham-Green, C.R., Plesken, W.: Linear pro-p-groups of finite width. Lecture Notes in Mathematics 1674. Springer Verlag, Berlin-Heidelberg, 1997Google Scholar
  9. 9.
    Klopsch, B.: Zeta functions related to the pro-p group SL11p). Math. Proc. Camb. Phil. Soc. 135, 45–57 (2003)CrossRefGoogle Scholar
  10. 10.
    Klopsch, B.: Pro-p groups with linear subgroup growth. Math. Z. 245, 335–370 (2003)CrossRefGoogle Scholar
  11. 11.
    Klopsch, B.: Groups with less than n subgroups of index n. To appearGoogle Scholar
  12. 12.
    Lazard, M.: Groupes analytiques p-adiques. Publ. Math. IHÉS 26, 389–603 (1965)Google Scholar
  13. 13.
    Lubotzky, A., Segal, D.: Subgroup Growth. Progress in Mathematics 212. Birkhäuser Verlag, Basel-Boston-Berlin, 2003Google Scholar
  14. 14.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Interscience, New York, 1966Google Scholar
  15. 15.
    Mann, A.: The power structure of p-groups. I. J. Algebra 42, 121–135 (1976)CrossRefGoogle Scholar
  16. 16.
    Shalev, A.: Groups whose subgroup growth is less than linear. Int. J. Algebra Comput. 7, 77–91 (1997)CrossRefGoogle Scholar
  17. 17.
    Shalev, A.: Asymptotic group theory. Notices Am. Math. Soc. 48, 383–389 (2001)Google Scholar
  18. 18.
    Souvignier, B.: Erweiterungen von analytischen pro-p Gruppen mit endlichen Gruppen. Ph.D. Thesis, RWTH Aachen, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematisches InstitutHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations