Mathematische Zeitschrift

, Volume 249, Issue 2, pp 329–356 | Cite as

BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality

  • J. Dziubański
  • G. Garrigós
  • T. Martínez
  • J. L. TorreaEmail author
  • J. Zienkiewicz


We identify the dual space of the Hardy-type space Open image in new window related to the time independent Schrödinger operator Open image in new window =−Δ+V, with V a potential satisfying a reverse Hölder inequality, as a BMO-type space Open image in new window . We prove the boundedness in this space of the versions of some classical operators associated to Open image in new window (Hardy-Littlewood, semigroup and Poisson maximal functions, square function, fractional integral operator). We also get a characterization of Open image in new window in terms of Carlesson measures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennet, C., DeVore, R.A., Sharpley, R.: Weak-L and BMO. Ann. Math. 113, 601–611 (1981)Google Scholar
  2. 2.
    Dziubański, J., Zienkiewicz, J.: Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999)Google Scholar
  3. 3.
    Dziubański, J., Zienkiewicz, J.: Hp spaces for Schrödinger operators. Fourier Analysis and Related Topics, Vol. 56, Banach Center Publications, 2002, pp. 45–53Google Scholar
  4. 4.
    Dziubański, J., Zienkiewicz, J.: Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. to appearGoogle Scholar
  5. 5.
    Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kurata, K.: An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials. J. London Math. Soc. (2) 62, 885–903 (2000)Google Scholar
  7. 7.
    Shen, Z.: Lp estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier 45(2), 513–546 (1995)zbMATHGoogle Scholar
  8. 8.
    Stein, E.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Princeton University Press, Princeton NJ, 1970Google Scholar
  9. 9.
    Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993Google Scholar
  10. 10.
    Torchinsky, A.: Real-variable methods in harmonic analysis. Pure and Applied Mathematics, 123. Academic Press Inc., Orlando, 1986Google Scholar
  11. 11.
    Stempak, K., Torrea, J.L.: Endpoint results for Poisson inetgrals and Riesz transforms for Hermite function expansions. PreprintGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Dziubański
    • 1
  • G. Garrigós
    • 2
  • T. Martínez
    • 2
  • J. L. Torrea
    • 2
    Email author
  • J. Zienkiewicz
    • 1
  1. 1.Institute of MathematicsUniversity of WrocławWrocławPoland
  2. 2.Departamento de Matemáticas, Universidad Autónoma de MadridCiudad Universitaria de CantoblancoMadridSpain

Personalised recommendations