Mathematische Zeitschrift

, Volume 249, Issue 1, pp 85–96

Topologically transitive extensions of bounded operators



Let X be any Banach space and T a bounded operator on X. An extensionOpen image in new window of the pair (X,T) consists of a Banach space Open image in new window in which X embeds isometrically through an isometry i and a bounded operatorOpen image in new window on Open image in new window such that Open image in new window When X is separable, it is additionally required that Open image in new window be separable. We say that Open image in new window is a topologically transitive extension of (X, T) when Open image in new window is topologically transitive on Open image in new window, i.e. for every pair Open image in new window of non-empty open subsets of Open image in new window there exists an integer n such that Open image in new window is non-empty. We show that any such pair (X,T) admits a topologically transitive extension Open image in new window, and that when H is a Hilbert space, (H,T) admits a topologically transitive extension Open image in new window where Open image in new window is also a Hilbert space. We show that these extensions are indeed chaotic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansari, S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384–390 (1997)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Amer. Math. Monthly 99, 332–334 (1992)MathSciNetMATHGoogle Scholar
  3. 3.
    Bermudez, T., Kalton, N.J.: The range of operators on Von Neumann algebras. Proc. Amer. Math. Soc. 130, 1447–1455 (2002)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bernal-González, L.: On hypercyclic operators on Banach spaces. Proc. Amer. Math. Soc. 127, 1003–1010 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonet, J.: Hypercylic and chaotic convolution operators. J. London Math. Soc. 62, 253–262 (2000)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Bonet, J., Martinez-Giménez, F., Peris, A.: A Banach space with no chaotic operator. Bull. London Math. Soc. 33, 196–198 (2001)MathSciNetMATHGoogle Scholar
  8. 8.
    Bonet, J., Martínez-Giménez, F., Peris, A.: Linear chaos on Fréchet spaces. Int. J. of Bifurcation and Chaos 13, 1649–1655 (2003)CrossRefGoogle Scholar
  9. 9.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. 2nd ed. Reading, MA: Addison-Wesley, 1989Google Scholar
  10. 10.
    Feldman, N.: Linear Chaos. Preprint,
  11. 11.
    Ferenczi, V.: Quotient hereditarily indecomposable Banach spaces. Canad. J. Math. 51, 566–584 (1999)MathSciNetMATHGoogle Scholar
  12. 12.
    Fong, C.K., Wu, P.Y.: Diagonal operators: dilatation, sum and product. Acta Sci. Math. (Szeged). 57, 125–138 (1993)MathSciNetMATHGoogle Scholar
  13. 13.
    Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Studia Math. 159, 121–141 (2003)Google Scholar
  14. 14.
    Godefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98, 229–269 (1991)MathSciNetMATHGoogle Scholar
  15. 15.
    Gowers, W.T., Maurey, B.: The unconditional basic sequence problem. J. Amer. Math. Soc. 6, 851–874 (1993)MathSciNetMATHGoogle Scholar
  16. 16.
    Grivaux, S.: Construction of operators with prescribed behaviour. Archiv der Math. 81, 291–299 (2003)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Grivaux, S.: Sums of hypercyclic operators. J. Func. Anal. 202, 486–503 (2003)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Grivaux, S.: Hypercyclic operators with an infinite dimensional closed subspace of periodic points. Rev. Mat. Complut. 16, 383–390 (2003)MATHGoogle Scholar
  19. 19.
    Grosse-Erdmann, K.G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36, 345–381 (1999)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99, 179–190 (1991)MathSciNetMATHGoogle Scholar
  21. 21.
    Kitai, C.: Invariant closed sets for linear operators. Ph. D. thesis. Univ. of Toronto, 1982Google Scholar
  22. 22.
    Rolewicz, S.: On orbits of elements. Studia Math. 32, 17–22 (1969)MATHGoogle Scholar
  23. 23.
    Salas, H.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995)MathSciNetMATHGoogle Scholar
  24. 24.
    Shapiro, J.H.: Notes on the dynamics of linear operators. Unpublished notes,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Équipe d’AnalyseUniversité Paris 6, Case 186Paris Cedex 05France

Personalised recommendations