Mathematische Zeitschrift

, Volume 248, Issue 3, pp 593–633 | Cite as

Zero energy asymptotics of the resolvent for a class of slowly decaying potentials

  • S. FournaisEmail author
  • E. Skibsted


We prove a limiting absorption principle at zero energy for two-body Schrödinger operators with long-range potentials having a positive virial at infinity. More precisely, we establish a complete asymptotic expansion of the resolvent in weighted spaces when the spectral parameter tends to zero in cones which are adjacent to the positive real axis. The principal tools are absence of eigenvalue at zero, singular Mourre theory and microlocal estimates.


Asymptotic Expansion Real Axis Spectral Parameter Weighted Space Zero Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scula Norm. Sup. Pisa 2(2), 152–218 (1975)Google Scholar
  2. 2.
    Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1), 45–57, (1977); correction Duke Math. J. 46(1), 215 (1979)zbMATHGoogle Scholar
  3. 3.
    Beals, R.: Weighted distribution spaces and pseudodifferential operators. J. Analyse Math. 39, 131–187 (1981)zbMATHGoogle Scholar
  4. 4.
    Bollé, D., Gesztesy, F., Schweiger, W.: Scattering theory for long-range systems at threshold. J. Math. Phys. 26(7), 1661–1674 (1985)CrossRefGoogle Scholar
  5. 5.
    Bony, J.M., Chemin, J.Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. France 122(1), 77–118 (1994)zbMATHGoogle Scholar
  6. 6.
    Cycon, H.L., Perry, P.A.: Local time-decay of high energy scattering states for the Schrödinger equation. Math. Z. 188, 125–142 (1984)zbMATHGoogle Scholar
  7. 7.
    Dereziński, J., Gérard, C.: Scattering theory of classical and quantum N-particle systems. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997Google Scholar
  8. 8.
    Gérard, C.: Asymptotic completeness for 3-particle systems. Invent. Math. 114, 333–397 (1993)Google Scholar
  9. 9.
    Gérard, C., Isozaki, H., Skibsted, E.: N-body resolvent estimates. J. Math. Soc. Japan 48(1), 135–160 (1996)Google Scholar
  10. 10.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001, Reprint of the 1998 editionGoogle Scholar
  11. 11.
    Herbst, I.: Spectral and scattering theory for Schrödinger operators with potentials independent of | x| . Am. J. Math. 113(3), 509–565 (1991)zbMATHGoogle Scholar
  12. 12.
    Hörmander, L.: The analysis of linear partial differential operators. III. Springer-Verlag, Berlin, 1985Google Scholar
  13. 13.
    Isozaki, H.: Differentiability of generalized Fourier transforms associated with Schrödinger operators. J. Math. Kyoto Univ. 25(4), 789–806 (1985)zbMATHGoogle Scholar
  14. 14.
    Isozaki, H., Kitada, J.: Scattering matrices for two-body Schrödinger operators. Scientific papers of the College of Arts and Sciences, Tokyo Univ. 35, 81–107 (1985)Google Scholar
  15. 15.
    Jensen, A.: Propagation estimates for Schrödinger-type operators. Trans. Am. Math. Soc. 291(1), 129–144 (1985)zbMATHGoogle Scholar
  16. 16.
    Jensen, A.: High energy resolvent estimates for generalized many-body Schrödinger operators. Publ. RIMS, Kyoto Univ. 25, 155–167 (1989)Google Scholar
  17. 17.
    Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46(3), 583–611 (1979)zbMATHGoogle Scholar
  18. 18.
    Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds. Rev. Math. Physics, 13(6), 717–754 (2001)Google Scholar
  19. 19.
    Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. of Math. (2) 121(3), 463–494 (1985). With an appendix by E. M. SteinGoogle Scholar
  20. 20.
    Jensen, A., Mourre, É., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré Phys. Théor. 41(2), 207–225 (1984)zbMATHGoogle Scholar
  21. 21.
    Kato, T.: Perturbation theory for linear operators. Springer-Verlag, Berlin, 1995, Reprint of the 1980 editionGoogle Scholar
  22. 22.
    Kitada, K.: Time-decay of the high energy part of the solution for a Schrödinger equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31(1), 109–146 (1984)zbMATHGoogle Scholar
  23. 23.
    Mourre, É.: Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys. 78(3), 391–408 (1980/81)zbMATHGoogle Scholar
  24. 24.
    Møller, J.S., Skibsted, E.: Spectral theory of time-periodic many-body systems. MaPhySto Preprint (2002), no. 2002–26; to appear in Adv. in MathGoogle Scholar
  25. 25.
    Nakamura, S.: Low energy asymptotics for Schrödinger operators with slowly decreasing potentials. Comm. Math. Phys. 161(1), 63–76 (1994)zbMATHGoogle Scholar
  26. 26.
    Perry, P., Sigal, I.M., Simon, B.: Spectral analysis of N-body Schrödinger operators. Ann. of Math. 114(3), 519–567 (1981)zbMATHGoogle Scholar
  27. 27.
    Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Comm. Math. Phys. 61, 149–168 (1978)zbMATHGoogle Scholar
  28. 28.
    Reed, M., Simon, B.: Methods of modern mathematical physics I-IV. Academic Press, 1972–78Google Scholar
  29. 29.
    Skibsted, E.: Long-range scattering of three-body quantum systems: Asymptotic completeness. Invent. Math. 151, 65–99 (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Tamura, H.: Principle of limiting absorption for N-body Schrödinger operators. Letters in Math. Phys. 17, 31–36 (1989)zbMATHGoogle Scholar
  31. 31.
    Yafaev, D.R.: The low energy scattering for slowly decreasing potentials. Comm. Math. Phys. 85(2), 177–196 (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité Paris-Sud-Bât 425Orsay CedexFrance
  2. 2.Institut for Matematiske FagAarhus UniversitetNy MunkegadeDenmark

Personalised recommendations