Mathematische Zeitschrift

, Volume 248, Issue 1, pp 67–100

Cumulants in noncommutative probability theory I. Noncommutative exchangeability systems

Article

Abstract.

Cumulants linearize convolution of measures. We use a formula of Good to define noncommutative cumulants in a very general setting. It turns out that the essential property needed is exchangeability of random variables. Roughly speaking the formula says that cumulants are moments of a certain ‘‘discrete Fourier transform’’ of a random variable. This provides a simple unified method to understand the known examples of cumulants, like classical, free and various q-cumulants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avitzour, D.: Free products of C* -algebras. Trans. Amer. Math. Soc. 271, 423–435 (1982)MathSciNetMATHGoogle Scholar
  2. 2.
    Biane, P., Goodman, F., Nica, A.: Non-crossing cumulants of type B. Trans. Amer. Math. Soc. 355, 2263–2303 (2003) arXiv:math.OA/0206167CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bożejko, M., Leinert, M., Speicher, R.: Convolution and limit theorems for conditionally free random variables. Pacific J. Math. 175, 357–388 (1996)MathSciNetGoogle Scholar
  4. 4.
    Bożejko, M.: Uniformly bounded representations of free groups. J. Reine Angew. Math. 377, 170–186 (1987)MathSciNetGoogle Scholar
  5. 5.
    Bożejko, M.: Deformed free probability of Voiculescu. Sūrikaisekikenkyūsho Kōkyūroku (1227), 96–113 (2001), Infinite dimensional analysis and quantum probability theory (Japanese) Kyoto, 2000Google Scholar
  6. 6.
    Brillinger, D.: The calculation of cumulants via conditioning. Ann. Inst. Statist. Math. 21, 375–390 (1969)Google Scholar
  7. 7.
    Bożejko, M., Speicher, R.: ψ-independent and symmetrized white noises. Quantum probability & related topics, World Sci. Publishing, River Edge, NJ, 1991, pp. 219–236Google Scholar
  8. 8.
    Bożejko, M., Speicher, R.: Interpolations between bosonic and fermionic relations given by generalized Brownian motions. Math. Z. 222, 135–159 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    Cabanal-Duvillard, T.: Non-crossing partitions for conditional freeness. Preprint, 1999Google Scholar
  10. 10.
    Chow, Y.S., Teicher, H.: Probability theory. Springer-Verlag, New York, 1978Google Scholar
  11. 11.
    Doubilet, P., Rota, G.-C., Stanley, R.: On the foundations of combinatorial theory. VI. The idea of generating function. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II: Probability theory, Univ. California Press, Berkeley, Calif., 1972, pp. 267–318Google Scholar
  12. 12.
    Fisher, R.: Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. Series 2 30, 199–238 (1929), Reprinted as paper 74 In: Collected Papers of R.A. Fisher, vol. 2, J.H. Bennett, (ed.), Univ. of Adelaide Press, 1972, pp. 351–354MATHGoogle Scholar
  13. 13.
    Good, I.J.: A new formula for cumulants. Math. Proc. Cambridge Philos. Soc. 78, 333–337 (1975)MATHGoogle Scholar
  14. 14.
    Good, I.J.: A new formula for k-statistics. The Ann. Statist. 5, 224–228 (1977)MATHGoogle Scholar
  15. 15.
    Goodman, F.M.: ℤ n–graded Independence, 2002, arXiv:math.OA/0206296Google Scholar
  16. 16.
    Ghorbal, A.B., Schürmann, M.: On the algebraic foundations of non-commutative probability theory. Preprint, 2001Google Scholar
  17. 17.
    Hald, A.: The early history of the cumulants and the Gram–Charlier series. Internat. Statist. Rev. 68, 137–153 (2000)Google Scholar
  18. 18.
    Hegerfeldt, G.C.: Noncommutative analogs of probabilistic notions and results. J. Funct. Anal. 64, 436–456 (1985)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Hiai, F., and Petz, D.: The semicircle law, free random variables and entropy. American Mathematical Society, Providence, RI, 2000Google Scholar
  20. 20.
    Kingman, J.F.C.: Uses of exchangeability. Ann. Probability 6, 183–197 (1978)MATHGoogle Scholar
  21. 21.
    Kreweras, G.: Sur les partitions non croisées d’un cycle. Discrete Math. 1, 333–350 (1972)CrossRefMATHGoogle Scholar
  22. 22.
    Krawczyk, B., Speicher, R.: Combinatorics of free cumulants. J. Combin. Theory Ser. A 90, 267–292 (2000)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Krystek, A., Yoshida, H.: Deformed Narayana number arising from the r-free convolution. Preprint, 2002Google Scholar
  24. 24.
    Lehner, F.: Free cumulants and enumeration of connected partitions. European J. Combin. 23, 1025–1031 (2002)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Lehner, F.: Cumulants in noncommutative probability theory II. Generalized Gaussian random variables. Probab. Theory Related Fields 127, 407–422 (2003) arXiv:math.CO/0210443CrossRefMATHGoogle Scholar
  26. 26.
    Lehner, F.: Cumulants in noncommutative probability theory III. Creation- and annihilation operators on Fock spaces. Preprint, 2003, arXiv:math.CO/0210444Google Scholar
  27. 27.
    Lehner, F.: Cumulants in noncommutative probability theory IV. Noncrossing cumulants: De Finetti’s theorem, Lp-inequalities and Brillinger’s formula. Preprint, 2004Google Scholar
  28. 28.
    Leonov, V.P., Shiryaev, A.N.: On a method of calculation of semi-invariants. Theor. Prob. Appl. 4, 319–328 (1959)MATHGoogle Scholar
  29. 29.
    Mattner, L.: What are cumulants? Doc. Math. 4, 601–622 (1999)MathSciNetMATHGoogle Scholar
  30. 30.
    Młotkowski, W. : Operator-valued version of conditionally free product. Studia Math. 153, 13–30 (2002)Google Scholar
  31. 31.
    Mingo, J.A., Nica, A.: Crossings of set-partitions and addition of graded-independent random variables. Internat. J. Math. 8, 645–664 (1997)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Nica, A., Speicher, R.: Combinatorics of free probability theory. Lecture notes from a course at the IHP, Paris 1999, 2000Google Scholar
  33. 33.
    Nica, A., Shlyakhtenko, D., Speicher, R.: R-cyclic families of matrices in free probability. J. Funct. Anal. 188, 227–271 (2002)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Reiner, V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177, 195–222 (1997)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Rota, G.-C.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)MATHGoogle Scholar
  36. 36.
    Schützenberger, M.-P.: Sur certains paramètres caractéristiques des systèmes d’événements compatibles et dépendants et leur application au calcul des cumulants de la répétition. C. R. Acad. Sci. Paris 225, 277–278 (1947)MathSciNetGoogle Scholar
  37. 37.
    Schürmann, M.: Direct sums of tensor products and non-commutative independence. J. Funct. Anal. 133, 1–9 (1995)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Speed, T.P.: Cumulants and partition lattices. Austral. J. Statist. 25, 378–388 (1983)MathSciNetMATHGoogle Scholar
  39. 39.
    Speicher, R.: Multiplicative functions on the lattice of noncrossing partitions and free convolution. Math. Ann. 298, 611–628 (1994)MathSciNetMATHGoogle Scholar
  40. 40.
    Speicher, R.: On universal products. Free probability theory (Waterloo, ON, 1995), Amer. Math. Soc., Providence, RI, 1997, pp. 257–266Google Scholar
  41. 41.
    Speicher, R.: Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc. 132, no. (627), x+88 (1998)Google Scholar
  42. 42.
    Speicher, R.: A conceptual proof of a basic result in the combinatorial approach to freeness. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 213–222 (2000)CrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Speicher, R., Woroudi, R.: Boolean convolution. Free probability theory (Waterloo, ON, 1995), Amer. Math. Soc., Providence, RI, 1997, pp. 267–279Google Scholar
  44. 44.
    Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables. CRM Lecture Notes Series, vol. 1, American Mathematical Society, Providence, RI, 1992Google Scholar
  45. 45.
    van Leeuwen, H., Maassen, H.: An obstruction for q-deformation of the convolution product. J. Phys. A 29, 4741–4748 (1996)CrossRefMATHGoogle Scholar
  46. 46.
    Voiculescu, D.: Symmetries of some reduced free product C*-algebras. Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Springer, Berlin, 1985, pp. 556–588Google Scholar
  47. 47.
    Voiculescu, D.: Operations on certain non-commutative operator-valued random variables. Astérisque (232), 243–275 (1995), Recent advances in operator algebras (Orléans, 1992)Google Scholar
  48. 48.
    Voiculescu, D.: Lectures on free probability theory. Lectures on probability theory and statistics (Saint-Flour, 1998), Springer, Berlin, 2000, pp. 279–349Google Scholar
  49. 49.
    von Waldenfels, W.. An approach to the theory of pressure broadening of spectral lines. Probability and information theory, II, Springer, Berlin, Lecture Notes in Math., Vol. 296, 1973, pp. 19–69Google Scholar
  50. 50.
    von Waldenfels, W.: Interval partitions and pair interactions. Séminaire de Probabilités, IX, Lecture Notes in Math., Vol. 465, Springer, Berlin, 1975, pp. 565–588Google Scholar
  51. 51.
    Yoshida, H.: Remarks on the s-free convolution. Preprint, 2002Google Scholar
  52. 52.
    Yoshida, H.: The weight function on non-crossing partitions for the Δ-convolution. Preprint, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Mathematik CTechnische Universität GrazGrazAustria

Personalised recommendations