Advertisement

Mathematische Zeitschrift

, Volume 246, Issue 1–2, pp 373–403 | Cite as

Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift

Article

Abstract.

The main purpose of this article is to present uniform integral inequalities for the fundamental solutions of diffusions on compact manifolds with divergence free drift vector fields. The method relies on the fact that the heat flow depends on the isoperimetric function. The isoperimetric function is used to construct a suitable comparison manifold. The heat kernel of this comparison manifold gives uniform bounds for the fundamental solutions of the original diffusion problem. The results presented here can be used to solve some open problem of Bhattacharya and Götze about diffusions with periodic, divergence free drift vector fields (see [Bhagöt1] and [Bhagöt2]).

Keywords

isoperimetric function comparison manifold rearrangement heat flow diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson, D.G.: Bounds for the fundamental solutions of a parabolic equation. Bull. Am. Math. Soc. 73, 860–896 (1967)Google Scholar
  2. 2.
    Bandle, C.: Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics, Pittman, 1980Google Scholar
  3. 3.
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, Amsterdam, New York, 1978Google Scholar
  4. 4.
    Bérard, P.: Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics 1207, Springer, 1986Google Scholar
  5. 5.
    Bérard, P., Meyer, D.: Inégalités isopérimétriques et applications. Ann. Sci. École Norm. Sup. (4) 15 (3), 513–541 (1982)Google Scholar
  6. 6.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer Verlag, Berlin, Heidelberg, 1992Google Scholar
  7. 7.
    Bhattacharya, R., Götze, F.: Time-scales for Gaussian approximation and its breakdown under a hierarchy of periodic spatial heterogeneties. Bernoulli 1, 81–123 (1995)MathSciNetGoogle Scholar
  8. 8.
    Bhattacharya, R., Götze, F.: Correction to: Time scales for Gaussian approximation and its breakdown under a hierarchy of periodic spatial heterogeneties. Bernoulli 2, 107–108 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., Orlando, 1984Google Scholar
  10. 10.
    Davies, B., Safarov, Y.: Spectral Theory and Geometry. Series of the London Mathematical Society 273, Cambridge University Press, 1999Google Scholar
  11. 11.
    Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. John Wiley & Sons, Inc, New York, 1986Google Scholar
  12. 12.
    Faber, G.: Beweis, daßunter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsbericht der Bayerischen Akademie der Wissenschaften, Mathematik und Physik, München, 1923, pp. 169–172Google Scholar
  13. 13.
    Gallot, S.: Inégalités isopérimétric et analytiques sur les variétés riemanniennes. On the geometry of differentiable manifolds (Rome, 1986). Astérisque 163-164, 31–91 (1988)Google Scholar
  14. 14.
    Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. 2nd ed. Springer Verlag, Berlin, Heidelberg, 1990Google Scholar
  15. 15.
    Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature and Cohomology, Vol. I. Academic Press, Inc, New York, London, 1972Google Scholar
  16. 16.
    Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics 1635, Springer, 1996Google Scholar
  17. 17.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam, New York, 1981Google Scholar
  18. 18.
    Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics 1150, Springer, 1985Google Scholar
  19. 19.
    Krahn, E.: Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen. Acta Commm. Univ. Ta. A9, 1–44 (1926)Google Scholar
  20. 20.
    Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics, 14, American Mathematical Society, RI, 1997Google Scholar
  21. 21.
    Taira K.: Diffusion Processes and Partial Differential Equations. Academic Press, Inc, New York, Tokyo, 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Ruhr Universität Bochum

Personalised recommendations