Mathematische Zeitschrift

, Volume 246, Issue 1–2, pp 213–236

Complete involutive algebras of functions on cotangent bundles of homogeneous spaces

Article
  • 52 Downloads

Abstract.

Homogeneous spaces of all compact Lie groups admit Riemannian metrics with completely integrable geodesic flows by means of C–smooth integrals [9, 10]. The purpose of this paper is to give some constructions of complete involutive algebras of analytic functions, polynomial in velocities, on the (co)tangent bundles of homogeneous spaces of compact Lie groups. This allows us to obtain new integrable Riemannian and sub-Riemannian geodesic flows on various homogeneous spaces, such as Stiefel manifolds, flag manifolds and orbits of the adjoint actions of compact Lie groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloff, S., Wallach, R.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81 (1), 93–97 (1975)MATHGoogle Scholar
  2. 2.
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Dynamical Systems III, Springer, 1988Google Scholar
  3. 3.
    Babenko, I.K., Nekhoroshev, N.N.: Complex structures on two-dimensional tori that admit metrics with a nontrivial quadratic integral. Mat. Zametki 58 (5), 643–652 (Russian) (1995)MATHGoogle Scholar
  4. 4.
    Bazaikin, Ya.V.: Double quotients of Lie groups with an integrable geodesic flows. Sibirsk. Mat. Zh. 41 (3), 513–530 (2000) (Russian); English translation: Siberian Math. J. 41 (3), 419–432 (2000)Google Scholar
  5. 5.
    Bolsinov, A.V.: Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution. Izv. Acad. Nauk SSSR, Ser. matem. 55(1), 68–92 (1991) (Russian); English translation: Math. USSR-Izv. 38 (1), 69–90 (1992)Google Scholar
  6. 6.
    Bolsinov, A.V., Kozlov, V.V., Fomenko, A.T.: The Maupertuis’s principle and geodesic flows on S 2 arising from integrable cases in the dynamics of a rigid body. Uspekhi Mat. Nauk 50 (3), 3–32 (1995) (Russian); English translation: Russ. Math. Surv. 50, 473–501 (1995)MATHGoogle Scholar
  7. 7.
    Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flow with positive topological entropy. Invent. math. 140, 639–650 (2000); arXiv: math.DG/9905078CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows on the suspensions of toric automorphisms. Tr. Mat. Inst. Steklova 231, 46–63 (2000) (Russian); English translation: Proc. Steklov. Inst. Math. 231 (4), 42–58 (2000); arXiv: math.DG/9911193MathSciNetMATHGoogle Scholar
  9. 9.
    Bolsinov, A.V., Jovanović, B.: Integrable geodesic flows on homogeneous spaces. Matem. Sbornik 192 (7), 21–40 (2001) (Russian): English translation: Sb. Mat. 192 (7–8), 951–969 (2001)MATHGoogle Scholar
  10. 10.
    Bolsinov, A.V., Jovanović, B.: Non-commutative integrability, moment map and geodesic flows. Ann. Global Anal. Geom. 23 (4), 305–322 (2003); arXiv: math-ph/ 0109031CrossRefMATHGoogle Scholar
  11. 11.
    Bordemann, M.: Hamiltonsche Mechanik auf homogenen Räumen. Diplomarbeit, Fakultät für Physik, Universität Freiburg, May 1985Google Scholar
  12. 12.
    Brailov, A.V.: Construction of complete integrable geodesic flows on compact symmetric spaces. Izv. Acad. Nauk SSSR, Ser. matem. 50 (2), 661–674 (1986) (Rfussian); English translation: Math. USSR-IzvGoogle Scholar
  13. 13.
    Butler, L.: A new class of homogeneous manifolds with Liouville-integrable geodesic flows. C. R. Math. Acad. Sci. Soc. R. Can. 21 (4), 127–131 (1999)MATHGoogle Scholar
  14. 14.
    Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm. Ergod. Th. & Dynam. Sys. 3, 219–230 (1983)Google Scholar
  15. 15.
    Guillemin, V., Sternberg, S.: Symplectic techniques in Physics. Cambridge University Press, 1984Google Scholar
  16. 16.
    Jovanović, B.: Geometry and integrability of Euler–Poincaré-Suslov equations. Nonlinearity 14 (6), 1555–1657 (2001); arXiv: math-ph/0107024CrossRefGoogle Scholar
  17. 17.
    Kiyohara, K.: Two-dimensional geodesic flows having first integrals of higher degree. Math. Ann. 320, 487–505 (2001)MathSciNetMATHGoogle Scholar
  18. 18.
    Kruglikov, B.: Examples of integrable sub-Riemannian geodesic flows. J. Dynam. Control Systems. 8 (3), 323–340 (2002); arXiv: math.DS/0105128CrossRefMATHGoogle Scholar
  19. 19.
    Kolokol’tsov, V.N.: Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities. Izv. Akad. Nauk SSSR Ser. Mat. 46 (5), 994–1010 (1982) (Russian); English translation: Math. USSR Izv. 21, 291–306 (1983)MATHGoogle Scholar
  20. 20.
    Kramer, M.: Sphärische Untergruppen in kompakten zusammenhangenden Liegruppen. Compositio Math. 38, 129–153 (1979)MathSciNetGoogle Scholar
  21. 21.
    Mishchenko, A.S.: Integration of geodesic flows on symmetric spaces. Mat. zametki 31 (2), 257–262 (1982) (Russian); English translation: Math. Notes. 31 (1–2), 132–134 (1982)MATHGoogle Scholar
  22. 22.
    Mishchenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Izv. Acad. Nauk SSSR, Ser. matem. 42 (2), 396–415 (1978) (Russian); English translation: Math. USSR-Izv. 12 (2), 371–389 (1978)Google Scholar
  23. 23.
    Mishchenko, A.S., Fomenko, A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funkts. Anal. Prilozh. 12 (2), 46–56 (1978) (Russian); English translation: Funct. Anal. Appl. 12, 113–121 (1978)MATHGoogle Scholar
  24. 24.
    Mikityuk, I.V.: Homogeneous spaces with integrable G–invariant Hamiltonian flows. Izv. Acad. Nauk SSSR, Ser. Mat. 47 (6), 1248–1262 (1983) (Russian); English translation in Math. USSR-Izv.Google Scholar
  25. 25.
    Mikityuk, I.V.: Integrability of the Euler equations associated with filtrations of semisimple Lie algebras. Matem. Sbornik 125 (4), 167 (1984) (Russian); English translation: Math. USSR Sbornik 53 (2), 541–549 (1986)MATHGoogle Scholar
  26. 26.
    Mykytyuk, I.V., Stepin, A.M.: Classification of almost spherical pairs of compact simple Lie groups. In: Poisson geometry, Banach Center Publ., 51, Polish Acad. Sci., Warsaw, 2000, pp. 231–241Google Scholar
  27. 27.
    Mykytyuk, I.V.: Actions of Borel subgroups on homogeneous spaces of reductive complex Lie groups and integrability. Composito Math. 127, 55–67 (2001)CrossRefMATHGoogle Scholar
  28. 28.
    Panyushev, D.I.: Complexity of quasiaffine homogeneous varieties, t–decompositions, and affine homogeneous spaces of complexity 1, Adv. in Soviet Math. 8, 151–166 (1992)MATHGoogle Scholar
  29. 29.
    Paternain, G.P., Spatzier, R.J.: New examples of manifolds with completely integrable geodesic flows. Adv. in Math. 108, 346–366 (1994); arXiv: math.DS/9201276CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Selivanova, E.N.: New examples of integrable conservative systems on S 2 and the case of Goryachev-Chaplygin. Commun. Math. Phys. 207, 641–663 (1999)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Selivanova, E.N.: New families of conservative systems on S 2 possessing an integral of fourth degree in momenta. Ann. Global Anal. Geom. Math. 17, 201–219 (1999)CrossRefMATHGoogle Scholar
  32. 32.
    Strichartz, R.S.: Sub-Riemannian geometry. J. Diff. Geometry, 24, 221–263 (1986); 30, 595–596 (1989)Google Scholar
  33. 33.
    Taimanov, I.A.: Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds. Izv. Acad. Nauk SSSR, Ser. matem. 51 (2), 429–435 (1987) (Russian); English translation: Math. USSR-Izv., 30 (2), 403–409 (1988)Google Scholar
  34. 34.
    Taimanov, I.A.: Integrable geodesic flows of nonholonomic metrics. J. Dynamical and Control Systems, 3 (1), 129–147 (1997); arXiv: dg-ga/9610012Google Scholar
  35. 35.
    Thimm, A.: Integrable geodesic flows on homogeneous spaces. Ergod. Th. & Dynam. Sys. 1, 495–517 (1981)Google Scholar
  36. 36.
    Trofimov, V.V.: Euler equations on Borel subalgebras of semisimple Lie groups. Izv. Acad. Nauk SSSR, Ser. matem., 43 (3), 714–732 (1979) (Russian). English translation: Math. USSR-Izv.Google Scholar
  37. 37.
    Trofimov, V.V., Fomenko, A.T.: Algebra and geometry of integrable Hamiltonian differential equations. Moscow, Faktorial, 1995 (Russian)Google Scholar
  38. 38.
    Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Uspekhi Mat. Nauk 56 (1), 3–62 (2001) (Russian); English translation: Russian Math. Surveys 56 (1), 1–60 (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsMoscowRussia
  2. 2.Matematički Institut SANUBeogradYugoslavia

Personalised recommendations