Mathematische Zeitschrift

, Volume 245, Issue 4, pp 761–779 | Cite as

Spectral properties of operator logarithms



We prove that the spectral height of the logarithm log A of a sectorial operator A equals the spectral angle of A. This yields old results of Prüss/Sohr and McIntosh as corollaries. Then we construct a sectorial operator A on a UMD space having bounded imaginary powers such that the group type of (Ais)s∈ℝ is strictly greater than π.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. 96. Basel: Birkhäuser. xi, 523 p., 2001Google Scholar
  2. 2.
    Auscher, P., McIntosh, A., Nahmod, A.: Holomorphic functional calculi of operators, quadratic estimates and interpolation. Indiana Univ. Math. J. 46(2), 375–403 (1997)MATHGoogle Scholar
  3. 3.
    Bade, W.G.: An operational calculus for operators with spectrum in a strip. Pacific J. Math. 3, 257–290 (1953)MathSciNetMATHGoogle Scholar
  4. 4.
    Boyadzhiev, K.N.: Logarithms and imaginary powers of operators on Hilbert spaces. Collect. Math. 45, 287–300 (1994)MathSciNetMATHGoogle Scholar
  5. 5.
    Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded H functional calculus. J. Austral. Math. Soc. Ser. A 60, 51–89 (1996)MathSciNetMATHGoogle Scholar
  6. 6.
    Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189–201 (1987)MathSciNetMATHGoogle Scholar
  7. 7.
    Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. (Pure and Applied Mathematics. Vol. 6) New York and London: Interscience Publishers. XIV, 858 p., 1958Google Scholar
  8. 8.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. 194. Berlin: Springer. xxi, 586 p., 2000Google Scholar
  9. 9.
    Haase, M.: A characterization of group generators on Hilbert spaces and the H - calculus. Semigroup Forum 66, 288–304 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Haase, M.: The Functional Calculus for Sectorial Operators and Similarity Methods. PhD thesis, Universität Ulm, 2003Google Scholar
  11. 11.
    Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. 3rd printing of rev. ed. of 1957. American Mathematical Society, Colloquium Publications, Vol. XXXI. Providence, Rhode Island: The American Mathematical Society. XII, 808 p., 1974Google Scholar
  12. 12.
    Kato, T.: Perturbation Theory for Linear Operators. Reprint of the corr. print. of the 2nd ed. 1980. Classics in Mathematics. Berlin: Springer-Verlag. xxi, 619 p., 1995Google Scholar
  13. 13.
    Merdy, C.L.: The similarity problem for bounded analytic semigroups on Hilbert space. Semigroup Forum 56, 205–224 (1998)MATHGoogle Scholar
  14. 14.
    Martínez Carracedo, C., Sanz Alix, M.: The theory of fractional powers of operators. North-Holland Publishing Co., Amsterdam, 2001Google Scholar
  15. 15.
    McIntosh, A.: Operators which have an H functional calculus. In: Miniconference on operator theory and partial differential equations (North Ryde, 1986), Austral. Nat. Univ., Canberra, 1986, pp. 210–231Google Scholar
  16. 16.
    Monniaux, S.: A new approach to the Dore-Venni theorem. Math. Nachr. 204, 163–183 (1999)MathSciNetMATHGoogle Scholar
  17. 17.
    Nollau, V.: Über den Logarithmus abgeschlossener Operatoren in Banachschen Räumen. Acta Sci. Math. (Szeged) 30, 161–174 (1969)MATHGoogle Scholar
  18. 18.
    Okazawa, N.: Logarithms and imaginary powers of closed linear operators. Int. Eqs. Oper. Theor. 38, 458–500 (2000)MATHGoogle Scholar
  19. 19.
    Prüss, J.: Evolutionary Integral Equations and Applications.Monographs in Mathematics. 87. Basel: Birkhäuser Verlag. xxvi, 366 p., 1993Google Scholar
  20. 20.
    Prüss, J., Sohr, H.: On operators with bounded imaginary powers in Banach spaces. Math. Z. 203, 429–452 (1990)MathSciNetGoogle Scholar
  21. 21.
    Uiterdijk, M.: Functional Calculi for Closed Linear Operators. PhD thesis, Technische Universiteit Delft, 1998Google Scholar
  22. 22.
    Uiterdijk, M.: A functional calculus for analytic generators of C 0-groups. Int. Eqs. Oper. Theor. 36, 349–369 (2000)MATHGoogle Scholar
  23. 23.
    Wolff, M.: A remark on the spectral bound of the generator of semigroups of positive operators with applications to stability theory. In: Functional analysis and approximation (Oberwolfach, 1980), volume~60 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 1981, pp. 39–50Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Abt. Angewandte AnalysisUniversität UlmUlm

Personalised recommendations