Advertisement

Mathematische Zeitschrift

, Volume 245, Issue 3, pp 597–617 | Cite as

Inverse spectral theory for one-dimensional Schrödinger operators: The A function

  • Christian Remling
Article

Abstract

We link recently developed approaches to the inverse spectral problem (due to Simon and myself, respectively). We obtain a description of the set of Simon’s A functions in terms of a positivity condition. This condition also characterizes the solubility of Simon’s fundamental equation.

Keywords

Spectral Theory Spectral Problem Positivity Condition Fundamental Equation Inverse Spectral Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs, 1968Google Scholar
  2. 2.
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)MathSciNetMATHGoogle Scholar
  3. 3.
    Gesztesy, F., Simon, B.: A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure. Ann. Math. 152, 593–643 (2000)MATHGoogle Scholar
  4. 4.
    Levitan, B.M.: Inverse Sturm-Liouville Problems. VNU Science Press, Utrecht, 1987Google Scholar
  5. 5.
    Levitan, B.M., Gasymov, M.G.: Determination of a differential equation by two of its spectra. Russ. Math. Surveys 19, 1–63 (1964)MATHGoogle Scholar
  6. 6.
    Marchenko, V.A.: Sturm-Liouville Operators and Applications. Birkhäuser, Basel, 1986Google Scholar
  7. 7.
    Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, Orlando, 1987Google Scholar
  8. 8.
    Ramm, A., Simon, B.: A new approach to inverse spectral theory, III. Short-range potentials. J. d’Analyse Math. 80, 319–334 (2000)MATHGoogle Scholar
  9. 9.
    Remling, C.: Schrödinger operators and de Branges spaces. J. Funct. Anal. 196, 323–394 (2002)MATHGoogle Scholar
  10. 10.
    Sakhnovich, L.A.: Spectral Theory of Canonical Systems. Method of Operator Identities. Birkhäuser, Basel, 1999Google Scholar
  11. 11.
    Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)MATHGoogle Scholar
  12. 12.
    Symes, W.: Inverse boundary value problems and a theorem of Gelfand and Levitan. J. Math. Anal. Appl. 71, 379–402 (1979)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Fachbereich Mathematik/InformatikUniversität OsnabrückOsnabrückGermany

Personalised recommendations