Mathematische Zeitschrift

, Volume 244, Issue 4, pp 711–723 | Cite as

On Carlson's depth conjecture in group cohomology

Article

Abstract

We establish a weak form of Carlson's conjecture on the depth of the mod-p cohomology ring of a p-group. In particular, Duflot's lower bound for the depth is tight if and only if the cohomology ring is not detected on a certain family of subgroups. The proofs use the structure of the cohomology ring as a comodule over the cohomology of the centre via the multiplication map. We demonstrate the existence of systems of parameters (so-called polarised systems) which are particularly well adapted to this comodule structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, D.J.: The image of the transfer map. Archiv. Math. 61, 7–11 (1993)MathSciNetMATHGoogle Scholar
  2. 2.
    Benson, D.J.: Polynomial invariants of finite groups. London Math. Soc. Lecture Note Series, vol. 190. Cambridge University Press, Cambridge, 1993Google Scholar
  3. 3.
    Broto, C., Henn, H.-W.: Some remarks on central elementary abelian p-subgroups and cohomology of classifying spaces. Quart. J. Math. Oxford Ser. 44(2), 155–163 (1993)MATHGoogle Scholar
  4. 4.
    Carlson, J.F.: Depth and transfer maps in the cohomology of groups. Math. Z. 218, 461–468 (1995)MathSciNetMATHGoogle Scholar
  5. 5.
    Carlson, J.F.: Problems in the calculation of group cohomology. In: P. Dräxler, G.O. Michler, C.M. Ringel, editors, Computational methods for representations of groups and algebras (Essen, 1997), pp. 107–120. Birkhäuser, Basel, 1999Google Scholar
  6. 6.
    Duflot, J.: Depth and equivariant cohomology. Comment. Math. Helv. 56, 627–637 (1981)MathSciNetMATHGoogle Scholar
  7. 7.
    Evens, L.: The cohomology of groups. Oxford Univ. Press, Oxford, 1991Google Scholar
  8. 8.
    Leary, I.J.: The integral cohomology rings of some p-groups. Math. Proc. Cambridge Philos. Soc. 110, 25–32 (1991)MathSciNetMATHGoogle Scholar
  9. 9.
    Milgram, R.J., Tezuka, M.: The geometry and cohomology of M 12. II. Bol. Soc. Mat. Mexicana 1(3), 91–108 (1995)MATHGoogle Scholar
  10. 10.
    Minh, P.A.: Essential cohomology and extraspecial p-groups. Trans. Amer. Math. Soc. 353, 1937–1957 (2000)Google Scholar
  11. 11.
    Quillen, D.: The mod-2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194, 197–212 (1971)MATHGoogle Scholar
  12. 12.
    Wilkerson, C.: A primer on the Dickson invariants. In: H.R. Miller, S.B. Priddy, editors, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemporary Math., vol. 19, p. 421–434. Amer. Math. Soc., Providence, RI, 1983Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Fachbereich 7 MathematikBergische Universität WuppertalWuppertalGermany

Personalised recommendations