Advertisement

Mathematische Zeitschrift

, Volume 245, Issue 1, pp 63–91 | Cite as

Hyperbolic constant mean curvature one surfaces: Spinor representation and trinoids in hypergeometric functions

  • Alexander I. Bobenko
  • Tatyana V. Pavlyukevich
  • Boris A. Springborn
Article

Keywords

Hypergeometric Function Spinor Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biswas, I.: A criterion for the existence of a parabolic stable bundle of rank two over the projective line. Int. J. Math. 9, 523–533 (1998)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bobenko, A.I.: Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In: A. Fordy, J. Wood, eds. Harmonic maps and integrable systems, Vieweg, Brauschweig, 1994, pp. 83–127Google Scholar
  3. 3.
    Bryant, R.L.: Surfaces of mean curvature one in hyperbolic space. Astérisque, 154–155, 321–347 (1987)Google Scholar
  4. 4.
    Collin, P., Hauswirth, L., Rosenberg, H.: The geometry of finite topology Bryant surfaces. Ann. Math. (2) 153, 623–659 (2001)Google Scholar
  5. 5.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vol. I, McGraw-Hill Book Co., New York, 1953Google Scholar
  6. 6.
    Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146, 507–503 (2001)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Klein, F.: Vorlesungen über die hypergeometrische Funktion, Springer-Verlag, Berlin, 1981. Reprint of the 1933 originalGoogle Scholar
  8. 8.
    Kusner, R., Schmitt, N.: The spinor representation of surfaces in space, arXiv:dg-ga/9610005, 1996Google Scholar
  9. 9.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, Berlin, 1966Google Scholar
  10. 10.
    Rossman, W., Umehara, M., Yamada, K.: Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus. Tôhoku Math. J. 49, 449–484 (1997)MATHGoogle Scholar
  11. 11.
    Umehara, M., Yamada, K.: Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space. Ann. Math. 137, 611–638 (1993)MathSciNetMATHGoogle Scholar
  12. 12.
    Umehara, M., Yamada, K.: Surfaces of constant mean curvature c in H 3(-c 2) with prescribed hyperbolic Gauss map. Math. Ann. 304, 203–209 (1996)MathSciNetMATHGoogle Scholar
  13. 13.
    Umehara, M., Yamada, K.: Another construction of a CMC-1 surface in H 3. Kyungpook Math. J. 35, 831–849 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Umehara, M., Yamada, K.: Metrics of constant curvature 1 with three conical singularities on the 2-sphere. Illinois J. Math. 44, 72–94 (2000)MathSciNetMATHGoogle Scholar
  15. 15.
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge University Press, Cambridge, 1962Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander I. Bobenko
    • 1
  • Tatyana V. Pavlyukevich
    • 1
  • Boris A. Springborn
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations