Mathematische Zeitschrift

, Volume 243, Issue 2, pp 263–289

Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps

  • Roger Moser
Original article

Abstract.

Let \(\Omega \subset{\mathbb R}^n (n \ge 2)\) be open and \(N \subset {\mathbb R}^K\) a smooth, compact Riemannian manifold without boundary. We consider the approximated harmonic map equation \(\Delta u + A(u)(\nabla u, \nabla u) = f\) for maps \(u \in {H^1(\Omega, N)}\), where \(f \in L^p(\Omega,{\mathbb R}^K)\). For \(p > \frac{n}{2}\), we prove Hölder continuity for weak solution s which satisfy a certain smallness condition. For \(p = \frac{n}{2}\), we derive an energy estimate which allows to prove partial regularity for stationary solutions of the heat flow for harmonic maps in dimension \(n \le 4\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Roger Moser
    • 1
  1. 1.Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22–26, 04103 Leipzig, Germany (e-mail: moser@mis.mpg.de) DE

Personalised recommendations