Advertisement

The strong Atiyah and Lück approximation conjectures for one-relator groups

  • Andrei Jaikin-ZapirainEmail author
  • Diego López-Álvarez
Article
  • 2 Downloads

Abstract

It is shown that the strong Atiyah conjecture and the Lück approximation conjecture in the space of marked groups hold for locally indicable groups. In particular, this implies that one-relator groups satisfy both conjectures. We also show that the center conjecture, the independence conjecture and the strong eigenvalue conjecture hold for these groups. As a byproduct we prove that the group algebra of a locally indicable group over a field of characteristic zero has a Hughes-free epic division algebra and, in particular, it is embedded in a division algebra.

Notes

Acknowledgements

This paper is partially supported by the Grant MTM2017-82690-P of the Spanish MINECO and by the ICMAT Severo Ochoa project SEV-2015-0554. We would like to thank Fabian Henneke and Dawid Kielak for suggesting that our argument can be used to prove that the class of torsion-free groups satisfying the Atiyah conjecture is closed under extensions by locally indicable groups. We are also very grateful to Javier Sánchez for useful discussions, to Fabian Henneke for many comments on a previous version of this paper and to an anonymous referee for a thorough reading of the paper and useful suggestions.

References

  1. 1.
    Ara, P., Goodearl, K.R.: The realization problem for some wild monoids and the Atiyah problem. Trans. Am. Math. Soc 369, 5665–5710 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brodskii, S.: Equations over groups and groups with one defining relation. Sib. Mat. Zh. 25(2), 84–103 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brodskii, S.: Equations over groups and groups with one defining relation. Sib. Math. J. 25(2), 235–251 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohn, P.M.: Skew fields. Theory of general division rings. In: Encyclopedia of Mathematics and its Applications, vol. 57. Cambridge University Press, Cambridge (1995)Google Scholar
  5. 5.
    Cohn, P.M.: Free ideal rings and localization in general rings. In: New Mathematical Monographs, vol. 3. Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Dicks, W., Herbera, D., Sánchez, J.: On a theorem of Ian Hughes about division rings of fractions. Commun. Algebra 32, 1127–1149 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dicks, W., Linnell, P.A.: \(L^2\)-Betti numbers of one-relator groups. Math. Ann. 337, 855–874 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dodziuk, J., Linnell, P., Mathai, V., Schick, T., Yates, S.: Approximating \(L^2\)-invariants and the Atiyah conjecture. Commun. Pure Appl. Math. 56, 839–873 (2003)CrossRefGoogle Scholar
  9. 9.
    Dodziuk, J., Mathai, V.: Approximating \(L^2\)-invariants of amenable covering spaces: a combinatorial approach. J. Funct. Anal. 154, 359–378 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Elek, G.: The strong approximation conjecture holds for amenable groups. J. Funct. Anal. 239, 345–355 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elek, G., Szabó, E.: Hyperlinearity, essentially free actions and \(L^2\)-invariants. The sofic property. Math. Ann. 332, 421–441 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fischer, J., Karrass, A., Solitar, D.: On one-relator groups having elements of finite order. Proc. Am. Math. Soc. 33, 297–301 (1972)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goodearl, K.R.: von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Inc., Malabar (1991)zbMATHGoogle Scholar
  14. 14.
    Gräter, J., Sperner, R.: On embedding left-ordered groups into division rings. Forum Math. 27, 485–518 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. (2) 46, 231–248 (1940)CrossRefGoogle Scholar
  16. 16.
    Howie, J.: A short proof of a theorem of Brodskii. Publ. Mat. 44(2), 641–647 (2000)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hughes, I.: Division rings of fractions for group rings. Commun. Pure Appl. Math. 23, 181–188 (1970)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jaikin-Zapirain, A.: Approximation by subgroups of finite index and the Hanna Neumann conjecture. Duke Math. J. 166, 1955–1987 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jaikin-Zapirain, A.: The base change in the Atiyah and the Lück approximation conjectures. Geom. Funct. Anal. 29, 464–538 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jaikin-Zapirain, A.: \(L^2\)-Betti numbers and their analogues in positive characteristic. In: Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture Note Ser., vol. 455, pp. 346–406. Cambridge University Press, Cambridge (2019)CrossRefGoogle Scholar
  21. 21.
    Jaikin-Zapirain, A., López-Álvarez, D.: The strong Atiyah conjecture for one-relator groups. arXiv:1810.12135v1
  22. 22.
    Jaikin-Zapirain, A.: On homomorphisms of crossed products of locally indicable groups to division rings (2019) (preprint). http://matematicas.uam.es/~andrei.jaikin/preprints/crossedproduct.pdf
  23. 23.
    Kropholler, P., Linnell, P., Lück, W.: Groups of small homological dimension and the Atiyah conjecture. In: Geometric and Cohomological Methods in Group Theory, London Math. Soc. Lecture Note Ser., vol. 358, pp. 272–277. Cambridge University Press, Cambridge (2009)Google Scholar
  24. 24.
    Li, H.: Bivariant and extended Sylvester rank functions. arXiv:1901.07158
  25. 25.
    Linnell, P.: Division rings and group von Neumann algebras. Forum Math. 5, 561–576 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lück, W.: Approximating \(L^2\)-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4, 455–481 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lück, W.: \(L^2\)-invariants: theory and applications to geometry and \(K\)-theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002)Google Scholar
  28. 28.
    Malcolmson, P.: Determining homomorphisms to skew fields. J. Algebra 64(2), 399–413 (1980)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sánchez, J.: On division rings and tilting modules, Ph. D. Thesis, Universitat Autònoma de Barcelona (2008). https://www.tdx.cat/bitstream/handle/10803/3107/jss1de1.pdf
  30. 30.
    Schick, T.: \(L^2\)-determinant class and approximation of L2-Betti numbers. Trans. Am. Math. Soc. 353, 3247–3265 (2001)CrossRefGoogle Scholar
  31. 31.
    Schofield, A.H.: Representation of rings over skew fields. In: London Mathematical Society Lecture Note Series, vol. 92. Cambridge University Press, Cambridge (1985)Google Scholar
  32. 32.
    Stenström, B.: Rings of quotients, Die Grundlehren der Mathematischen Wissenschaften. In: An Introduction to Methods of Ring Theory, vol. 217. Springer, New York (1975)Google Scholar
  33. 33.
    Virili, S.: Crawley-Boewey’s extension of invariants in the non-discrete case (2017) (preprint) Google Scholar
  34. 34.
    Virili, S.: Algebraic entropy of amenable group actions. Math. Z. 291, 1389–1417 (2019)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wise, D.: Research announcement: the structure of groups with a quasiconvex hierarchy. Electron. Res. Announc. Math. Sci. 16, 44–55 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCMMadridSpain

Personalised recommendations