Advertisement

A homotopy theorem for Oka theory

  • Luca StuderEmail author
Article
  • 37 Downloads

Abstract

We prove a homotopy theorem for sheaves. Its application shortens and simplifies the proof of many Oka principles such as Gromov’s Oka principle for elliptic submersions.

Notes

Acknowledgements

I would like to thank Frank Kutzschebauch for suggesting the topic and many helpful discussions. Moreover I would like to thank Finnur Lárusson and Gerald Schwarz for numerous valuable comments on a preprint. I am also very thankful for stimulating discussions with Jasna Prezelj and Franc Forstnerič. Moreover, I would like to thank the referee for valuable comments. The study was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant no. 200021-178730).

References

  1. 1.
    Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196(3), 733–771 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arens, R.: Topologies for homeomorphism groups. Am. J. Math. 68(4), 593–610 (1946)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cartan, H.: Espaces fibrés analytiques. Syposium Internacional de Topologia Algebraica, Mexico (1958)zbMATHGoogle Scholar
  4. 4.
    Forster, O., Ramspott, K.J.: Okasche Paare von Garben nicht-abelscher Gruppen. Invent. Math. 1, 260–286 (1966)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Forster, O., Ramspott, K.J.: Analytische Modulgarben und Endromisbündel. Invent. Math. 2, 145–170 (1966)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Forstnerič, F.: The Oka principle for multivalued sections of ramified mappings. Forum Math. 15(2), 309–328 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Forstnerič, F.: The Oka principle for sections of stratified fiber bundles. Pure Appl. Math. Q. 6(3), 843–874 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis, Second Edition), Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Springer-Verlag, Berlin (2017)Google Scholar
  9. 9.
    Forstnerič, F., Prezelj, J.: Oka’s principle for holomorphic submersions with sprays. Math. Ann. 322(4), 633–666 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263–273 (1958)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gromov, M.: Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Springer, Berlin (1986)Google Scholar
  12. 12.
    Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2(4), 851–897 (1989)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Henkin, G.M., Leiterer, J.: Proof of Grauert’s Oka principle without induction over the basis dimension, Weierstrass Inst. Math., Berlin (1986), preprintGoogle Scholar
  14. 14.
    Kutzschebauch, F., Lárusson, F., Schwarz, G.W.: Homotopy principles for equivariant isomorphisms. Trans. Am. Math. Soc. 369(10), 7251–7300 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kutzschebauch, F., Lárusson, F., Schwarz, G.W.: Sufficient conditions for holomorphic linearisation. Transform. Groups 22(2), 475–485 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Leiterer, J.: On the similarity of holomorphic matrices, accepted for publication. J. Geom. Anal.  https://doi.org/10.1007/s12220-018-0008-4 (2018)
  17. 17.
    Munkers, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (2000)Google Scholar
  18. 18.
    Prezelj-Perman, J.: Homotopski princip za submerzije s sprayem nad Steinovimi prostori, PhD thesis, Ljubljana (2000)Google Scholar
  19. 19.
    Studer, L.: A general approach to the Oka principle, PhD thesis, Bern, https://boris.unibe.ch/121312/ (2018)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universität BernBernSwitzerland

Personalised recommendations