## Abstract

We prove a homotopy theorem for sheaves. Its application shortens and simplifies the proof of many Oka principles such as Gromov’s Oka principle for elliptic submersions.

## Notes

### Acknowledgements

I would like to thank Frank Kutzschebauch for suggesting the topic and many helpful discussions. Moreover I would like to thank Finnur Lárusson and Gerald Schwarz for numerous valuable comments on a preprint. I am also very thankful for stimulating discussions with Jasna Prezelj and Franc Forstnerič. Moreover, I would like to thank the referee for valuable comments. The study was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant no. 200021-178730).

## References

- 1.Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math.
**196**(3), 733–771 (2014)MathSciNetCrossRefGoogle Scholar - 2.Arens, R.: Topologies for homeomorphism groups. Am. J. Math.
**68**(4), 593–610 (1946)MathSciNetCrossRefGoogle Scholar - 3.Cartan, H.: Espaces fibrés analytiques. Syposium Internacional de Topologia Algebraica, Mexico (1958)zbMATHGoogle Scholar
- 4.Forster, O., Ramspott, K.J.: Okasche Paare von Garben nicht-abelscher Gruppen. Invent. Math.
**1**, 260–286 (1966)MathSciNetCrossRefGoogle Scholar - 5.Forster, O., Ramspott, K.J.: Analytische Modulgarben und Endromisbündel. Invent. Math.
**2**, 145–170 (1966)MathSciNetCrossRefGoogle Scholar - 6.Forstnerič, F.: The Oka principle for multivalued sections of ramified mappings. Forum Math.
**15**(2), 309–328 (2003)MathSciNetCrossRefGoogle Scholar - 7.Forstnerič, F.: The Oka principle for sections of stratified fiber bundles. Pure Appl. Math. Q.
**6**(3), 843–874 (2010)MathSciNetCrossRefGoogle Scholar - 8.Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis, Second Edition), Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Springer-Verlag, Berlin (2017)Google Scholar
- 9.Forstnerič, F., Prezelj, J.: Oka’s principle for holomorphic submersions with sprays. Math. Ann.
**322**(4), 633–666 (2002)MathSciNetCrossRefGoogle Scholar - 10.Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann.
**135**, 263–273 (1958)MathSciNetCrossRefGoogle Scholar - 11.Gromov, M.: Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Springer, Berlin (1986)Google Scholar
- 12.Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc.
**2**(4), 851–897 (1989)MathSciNetzbMATHGoogle Scholar - 13.Henkin, G.M., Leiterer, J.: Proof of Grauert’s Oka principle without induction over the basis dimension, Weierstrass Inst. Math., Berlin (1986), preprintGoogle Scholar
- 14.Kutzschebauch, F., Lárusson, F., Schwarz, G.W.: Homotopy principles for equivariant isomorphisms. Trans. Am. Math. Soc.
**369**(10), 7251–7300 (2017)MathSciNetCrossRefGoogle Scholar - 15.Kutzschebauch, F., Lárusson, F., Schwarz, G.W.: Sufficient conditions for holomorphic linearisation. Transform. Groups
**22**(2), 475–485 (2017)MathSciNetCrossRefGoogle Scholar - 16.Leiterer, J.: On the similarity of holomorphic matrices, accepted for publication. J. Geom. Anal. https://doi.org/10.1007/s12220-018-0008-4 (2018)
- 17.Munkers, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (2000)Google Scholar
- 18.Prezelj-Perman, J.: Homotopski princip za submerzije s sprayem nad Steinovimi prostori, PhD thesis, Ljubljana (2000)Google Scholar
- 19.Studer, L.: A general approach to the Oka principle, PhD thesis, Bern, https://boris.unibe.ch/121312/ (2018)

## Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019