Advertisement

Van Est differentiation and integration

  • Eckhard Meinrenken
  • María Amelia SalazarEmail author
Article
  • 8 Downloads

Abstract

The classical Van Est theory relates the smooth cohomology of Lie groups with the cohomology of the associated Lie algebra, or its relative versions. Some aspects of this theory generalize to Lie groupoids and their Lie algebroids. In this paper, continuing an idea from Li-Bland and Meinrenken (Enseign Math 61(1–2):93–137, 2015), we revisit the van Est theory using the Perturbation Lemma from homological algebra. Using this technique, we obtain precise results for the van Est differentiation and integrations maps at the level of cochains. Specifically, we construct homotopy inverses to the van Est differentiation maps that are right inverses at the cochain level.

Notes

Acknowledgements

E.M. was supported by an NSERC Discovery Grant. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001. The authors would like to thank the hospitality of Fields Institute where some of this research was carried out.

References

  1. 1.
    Abad, C., Crainic, M.: The Weil algebra and the Van Est isomorphism. Ann. Inst. Fourier (Grenoble) 61(3), 927–970 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borel, A.: Semisimple Groups and Riemannian Symmetric Spaces, Texts and Readings in Mathematics, vol. 16. Hindustan Book Agency, New Delhi (1998)CrossRefGoogle Scholar
  3. 3.
    Bott, R., Tu, L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)CrossRefGoogle Scholar
  4. 4.
    Brown, R.: The twisted Eilenberg-Zilber theorem, Simposio diTopologia (Messina, : Edizioni Oderisi). Gubbio 1965, 33–37 (1964)Google Scholar
  5. 5.
    Cabrera, A., Drummond, T.: Van Est isomorphism for homogeneous cochains. Pac. J. Math. 287(2), 297–336 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cabrera, A., Marcut, I., Salazar, A.: On local integration of Lie brackets. Journal für die reine und angewandte Mathematik (2018).  https://doi.org/10.1515/crelle-2018-0011 CrossRefGoogle Scholar
  7. 7.
    Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. Comment. Math. Helv. 78(4), 681–721 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Crainic, M., Fernandes, R.L.: Lectures on Integrability of Lie Brackets, Lectures on Poisson Geometry, Geom. Topol. Monogr., vol. 17, Geom. Topol. Publ., Coventry, pp. 1–107 (2011)Google Scholar
  9. 9.
    Crainic, M., Mestre, J.N.: Orbispaces as differentiable stratified spaces. Lett. Math. Phys. 108(3), 805–859 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dufour, J.-P., Zung, N.T.: Poisson Structures and their Normal Forms, Progress in Mathematics, vol. 242. Birkhäuser Verlag, Basel (2005)zbMATHGoogle Scholar
  11. 11.
    Dupont, J.L.: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15(3), 233–245 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dupont, J.L., Guichardet, A.: à propos de l’article: “Sur la cohomologie réelle des groupes de Lie simples réels” [Ann. Sci. Ećole Norm. Sup. (4) 11 (1978), no. 2, 277–292] par Guichardet et D. Wigner, Ann. Sci. École Norm. Sup. (4) 11(2), 293–295Google Scholar
  13. 13.
    Gugenheim, V.: On the chain-complex of a fibration. Ill. J. Math. 16, 398–414 (1972)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques [Mathematical Texts], vol. 2. CEDIC, Paris (1980)zbMATHGoogle Scholar
  15. 15.
    Guichardet, A., Wigner, D.: Sur la cohomologie réelle des groupes de Lie simples réels. Ann. Sci. École Norm. Sup. (4) 11(2), 277–292 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Houard, J.-C.: An integral formula for cocycles of Lie groups. Ann. Inst. H. Poincaré Sect. A (N.S.) 32(3), 221–247 (1980)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sze-tsen, Hu: Cohomology theory in topological groups. Mich. Math. J. 1, 11–59 (1952)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li-Bland, D., Meinrenken, E.: On the van Est homomorphism for Lie groupoids. Enseign. Math. 61(1–2), 93–137 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mehta, R.: \(Q\)-groupoids and their cohomology. Pac. J. Math. 242(2), 311–332 (2009)Google Scholar
  20. 20.
    Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  21. 21.
    Mostow, M., Perchik, J.: Notes on Gelfand–Fuks cohomology and characteristic classes (lectures delivered by R. Bott). In: Proceedings of the eleventh annual holiday symposium, New Mexico State University, pp. 1–126 (1973)Google Scholar
  22. 22.
    Pflaum, M.J., Posthuma, H., Tang, X.: The localized longitudinal index theorem for Lie groupoids and the van Est map. Adv. Math. 270, 223–262 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34, 105–112 (1968)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shulman, H., Tischler, D.: Leaf invariants for foliations and the Van Est isomorphism. J. Differ. Geom. 11(4), 535–546 (1976)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Świerczkowski, S.: Cohomology of group germs and Lie algebras. Pac. J. Math. 39, 471–482 (1971)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tu, J.: La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory 16(2), 129–184 (1999)Google Scholar
  27. 27.
    van Est, W.T.: Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15, 484–492, 493–504 (1953)Google Scholar
  28. 28.
    van Est, W.T.: On the algebraic cohomology concepts in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 225–233, 286–294 (1955)Google Scholar
  29. 29.
    W. T. van Est, Une application d’une méthode de Cartan-Leray, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 542–544 (1955)Google Scholar
  30. 30.
    Weinstein, A., Xu, P.: Extensions of symplectic groupoids and quantization. J. Reine Angew. Math. 417, 159–189 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Instituto de Matematica e EstatisticaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations