Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The \({\mathbb {A}}_{q,t}\) algebra and parabolic flag Hilbert schemes

Abstract

The earlier work of the first and the third name authors introduced the algebra \({\mathbb {A}}_{q,t}\) and its polynomial representation. In this paper we construct an action of this algebra on the equivariant K-theory of certain smooth strata in the flag Hilbert scheme of points on the plane. In this presentation, the fixed points of the torus action correspond to generalized Macdonald polynomials, and the matrix elements of the operators have an explicit presentation.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    A categorically inclined reader can view our algebras as categories with object set \({\mathbb {Z}}_{\ge 0}\). Then a representation of a category is a simply a functor to the category of vector spaces.

References

  1. 1.

    Biswas, I.: Parabolic bundles as orbifold bundles. Duke Math. J. 88(2), 305–326 (1997)

  2. 2.

    Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry, pp. 3–12. Birkhuser Inc., Boston pp (1997)

  3. 3.

    Cherednik, I.: Double Affine Hecke Algebras, vol. 319. Cambridge University Press, Cambridge (2005)

  4. 4.

    Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)

  5. 5.

    Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. J. Algebraic Geom. 10, 81–100 (2001)

  6. 6.

    Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Sel. Math. 17(3), 573–607 (2011)

  7. 7.

    Feigin, B., Tsymbaliuk, A.: Equivariant \(K\)-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011)

  8. 8.

    Garsia, A., Haiman, M.: A remarkable \(q, t\)-Catalan sequence and \(q\)-Lagrange inversion. J. Algebraic Comb. 5, 191–244 (1996)

  9. 9.

    Garsia, A., Haglund, J., Xin, G., Zabrocki, M.: Some New Applications of the Stanley-Macdonald Pieri Rules. The mathematical legacy of Richard P. Stanley, pp. 141–168. American Mathematical Society, Providence, RI (2016)

  10. 10.

    Gorsky, E., Neguţ, A.: Refined knot invariants and Hilbert schemes. Journal de mathématiques pures et appliquées 104(3), 403–435 (2015)

  11. 11.

    Gorsky, E., Neguţ, A., Rasmussen, J.: Flag Hilbert Schemes, Colored Projectors and Khovanov-Rozansky Homology. arXiv preprint arXiv:1608.07308 (2016)

  12. 12.

    Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. Curr. Dev. Math. 2002, 39–111 (2002)

  13. 13.

    Haiman, M.: Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2), 371–407 (2002)

  14. 14.

    Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2), 195–232 (2005)

  15. 15.

    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for nonsymmetric Macdonald polynomials. Am. J. Math. 130(2), 359–383 (2008)

  16. 16.

    Hogancamp, M.: Khovanov-Rozansky homology and higher Catalan sequences. arXiv preprint arXiv:1704.01562 (2017)

  17. 17.

    Jordan, D., Vazirani, M.: The rectangular representation of the double affine Hecke algebra via elliptic Schur-Weyl duality. arXiv preprint arXiv:1708.06024 (2017)

  18. 18.

    Lusztig, G.: Equivariant K-theory and representations of Hecke algebras. Proceedings of the American Mathematical Society 94(2), 337–342 (1985)

  19. 19.

    Mellit, A.: Toric braids and \((m, n)\)-parking functions, arXiv preprint arXiv:1604.07456 (2016)

  20. 20.

    Mellit, A.: Homology of torus knots. arXiv preprint arXiv:1704.07630 (2017)

  21. 21.

    Nakajima, H.: Lectures on Hilbert Schemes of Points Onsurfaces, vol. 18. American Mathematical Society, Providence, RI (1999)

  22. 22.

    Negut, A: Quantum toroidal and shuffle algebras, R-matrices and a conjecture of Kuznetsov. arXiv preprint arXiv:1302.6202 (2013)

  23. 23.

    Negut, A.: Moduli of flags of sheaves and their K-theory. Algebraic Geom. 2(1), 19–43 (2015)

  24. 24.

    Neguţ, A.: Hecke correspondences for smooth moduli spaces of sheaves. arXiv preprint arXiv:1804.03645 (2018)

  25. 25.

    Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. Geometry of moduli spaces and representation theory., IAS/Park City Math. Ser, vol. 24, pp. 251–380

  26. 26.

    Ram, A.: Affine Hecke algebras and generalized standard Young tableaux. J. Algebra 260(1), 367–415 (2003)

  27. 27.

    Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the \(K\)-theory of the Hilbert scheme of \({\mathbb{A}}^2\). Duke Math. J. 162(2), 279–366 (2013)

  28. 28.

    Tsymbaliuk, A.: Quantum affine Gelfand-Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces. Sel. Math. New Ser. 16(2), 173–200 (2010)

  29. 29.

    Thomason, R.W., Trobaugh, T.: Higher Algebraic k-Theory of Schemes and of Derived Categories. The Grothendieck Festschrift, pp. 247–435. Springer, Berlin (1990)

  30. 30.

    Vazirani, M.: Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Transform. Gr. 7(3), 267–303 (2002)

Download references

Acknowledgements

The authors would like to thank Mikhail Bershtein, Andrei Neguț and Monica Vazirani for the useful discussions. The work of E. G. was partially supported by the NSF grants DMS-1559338 and DMS-1700814, Russian Academic Excellence Project 5-100 and RSF-16-11-10160. The work of A. M. was supported by the Advanced Grant “Arithmetic and Physics of Higgs moduli spaces” No. 320593 of the European Research Council and by the START-Project Y963-N35 of the Austrian Science Fund.

Author information

Correspondence to Erik Carlsson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jean-Yves Welschinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlsson, E., Gorsky, E. & Mellit, A. The \({\mathbb {A}}_{q,t}\) algebra and parabolic flag Hilbert schemes. Math. Ann. (2019). https://doi.org/10.1007/s00208-019-01898-1

Download citation