Finiteness of Klein actions and real structures on compact hyperkähler manifolds


One central problem in real algebraic geometry is to classify the real structures of a given complex manifold. We address this problem for compact hyperkähler manifolds by showing that any such manifold admits only finitely many real structures up to equivalence. We actually prove more generally that there are only finitely many, up to conjugacy, faithful finite group actions by holomorphic or anti-holomorphic automorphisms (the so-called Klein actions). In other words, the automorphism group and the Klein automorphism group of a compact hyperkähler manifold contain only finitely many conjugacy classes of finite subgroups. We furthermore answer a question of Oguiso by showing that the automorphism group of a compact hyperkähler manifold is finitely presented.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1


  1. 1.

    This means that the G-homomorphism from \(A'\) to A is injective and identifies \(A'\) with a normal subgroup of A such that the quotient group is isomorphic to \(A''\) via the G-homomorphism from A to \(A''\).

  2. 2.

    Recall that a sequence of morphisms of pointed sets is called exact, if the image of a morphism is equal to the fiber of the next morphism over the base point.

  3. 3.

    A codimension-one face would be called a facet.

  4. 4.

    A hyperbolic lattice is a free abelian group of finite rank endowed with a non-degenerate bilinear form of signature \((1, {{\,\mathrm{rank}\,}}-1)\).


  1. 1.

    Amerik, E., Verbitsky, M.: Rational curves on hyperkähler manifolds. Int. Math. Res. Not. IMRN 23, 13009–13045 (2015)

  2. 2.

    Amerik, E., Verbitsky, M.: Hyperbolic geometry of the ample cone of a hyperkähler manifold. Res. Math. Sci. 3, Paper No. 7, 9 (2016)

  3. 3.

    Amerik, E., Verbitsky, M.: Morrison-Kawamata cone conjecture for hyperkähler manifolds. Ann. Sci. Éc. Norm. Supér. (4) 50(4), 973–993 (2017)

  4. 4.

    Amerik, E., Verbitsky, M.: Collections of orbits of hyperplane type in homogeneous spaces, homogeneous dynamics, and hyperkähler geometry. Int. Math. Res. Not. rnx319 (2018).

  5. 5.

    Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension \(4\). C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

  6. 6.

    Beauville, A.: Some remarks on kähler manifolds with c1= 0. In: Classification of Algebraic and Analytic Manifolds (Katata, 1982), vol. 39, pp. 1–26. Birkhäuser (1983). MR0728605

  7. 7.

    Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1984). (1983)

  8. 8.

    Benzerga, M.: Real structures on rational surfaces and automorphisms acting trivially on Picard groups. Math. Z. 282(3–4), 1127–1136 (2016)

  9. 9.

    Bieri, R.: Homological Dimension of Discrete Groups. Queen Mary College Mathematical Notes, 2nd edn. Department of Pure Mathematics, Queen Mary College, London (1981)

  10. 10.

    Bogomolov, F.A.: The decomposition of Kähler manifolds with a trivial canonical class. Mat. Sb. (N. S.) 93(135), 573–575 (1974). (630)

  11. 11.

    Bogomolov, F.A.: Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243(5), 1101–1104 (1978)

  12. 12.

    Borcherds, R.E.: Coxeter groups, Lorentzian lattices, and \(K3\) surfaces. Int. Math. Res. Not. 19, 1011–1031 (1998)

  13. 13.

    Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)

  14. 14.

    Borel, A., Serre, J.-P.: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39, 111–164 (1964)

  15. 15.

    Boissière, S., Sarti, A.: A note on automorphisms and birational transformations of holomorphic symplectic manifolds. Proc. Am. Math. Soc. 140(12), 4053–4062 (2012)

  16. 16.

    Dubouloz, A., Freudenburg, G., Moser-Jauslin, L.: Algebraic vector bundles on the 2-sphere and smooth rational varieties with infinitely many real forms. Preprint. (2018). arXiv:1807.05885

  17. 17.

    Degtyarev, A., Itenberg, I., Kharlamov, V.: Real Enriques Surfaces, Lecture Notes in Mathematics, vol. 1746. Springer, Berlin (2000)

  18. 18.

    Diller, J.: Cremona transformations, surface automorphisms, and plane cubics. Mich. Math. J. 60(2), 409–440 (2011). (with an appendix by Igor Dolgachev)

  19. 19.

    Dinh, T.-C., Oguiso, K.: A surface with a discrete and nonfinitely generated automorphism group. Duke Math. J. 168(6), 941–966 (2019).

  20. 20.

    Debarre, O., Voisin, C.: Hyper-kähler fourfolds and grassmann geometry. Journal für die reine und angewandte Mathematik (Crelles Journal) 2010(649), 63–87 (2010)

  21. 21.

    Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold. In: Oda, T. (ed.) Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10, pp. 105–165. North-Holland, Amsterdam (1987)

  22. 22.

    Göttsche, L., Huybrechts, D.: Hodge numbers of moduli spaces of stable bundles on \(K3\) surfaces. Int. J. Math. 7(3), 359–372 (1996)

  23. 23.

    Gross, M., Huybrechts, D., Joyce, D.: Calabi–Yau Manifolds and Related Geometries. Universitext. Springer, Berlin (2003). [lectures from the summer school held in Nordfjordeid (2001)]

  24. 24.

    Grivaux, J.: Parabolic automorphisms of projective surfaces (after M. H. Gizatullin). Mosc. Math. J. 16(2), 275–298 (2016)

  25. 25.

    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  26. 26.

    Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010)

  27. 27.

    Hassett, B., Tschinkel, Y.: Flops on holomorphic symplectic fourfolds and determinantal cubic hypersurfaces. J. Inst. Math. Jussieu 9(1), 125–153 (2010)

  28. 28.

    Huybrechts, D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)

  29. 29.

    Huybrechts, D.: Erratum: “Compact hyper-Kähler manifolds: basic results” Invent. Math. 135(1), 63–113 (1999) [Invent. Math. 152(1):209–212 (2003)]

  30. 30.

    Huybrechts, D.: A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky]. Astérisque 348, Exp. No. 1040, x, 375–403 (2012) (Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042)

  31. 31.

    Huybrechts, D.: Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, vol. 158. Cambridge University Press, Cambridge (2016)

  32. 32.

    Johnson, D.L.: Presentations of Groups, London Mathematical Society Student Texts, vol. 15, 2nd edn. Cambridge University Press, Cambridge (1997)

  33. 33.

    Kawamata, Y.: On the cone of divisors of Calabi–Yau fiber spaces. Int. J. Math. 8(5), 665–687 (1997)

  34. 34.

    Kharlamov, V.: Topology, moduli and automorphisms of real algebraic surfaces. Milan J. Math. 70, 25–37 (2002)

  35. 35.

    Kurnosov, N., Yasinsky, E.: Automorphisms of hyperkähler manifolds and groups acting on CAT(0) spaces. Preprint. (2018). arXiv:1810.09730

  36. 36.

    Lesieutre, J.: A projective variety with discrete, non-finitely generated automorphism group. Invent. Math. 212(1), 189–211 (2018)

  37. 37.

    Looijenga, E.: Discrete automorphism groups of convex cones of finite type. Compos. Math. 150(11), 1939–1962 (2014)

  38. 38.

    Lazić, V., Oguiso, K., Peternell, T.: The Morrison-Kawamata cone conjecture and abundance on Ricci flat manifolds. In: In: Ji, L., Yau, S-T. (eds.) Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations, Advanced Lectures in Mathematics, vol. 42, pp. 157–185. International Press (2018)

  39. 39.

    Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In: Ebeling, W., Hulek K., Smoczyk, K. (eds.) Complex and Differential Geometry, Springer Proceedings of Mathematics, vol. 8, pp, 257–322. Springer, Heidelberg (2011)

  40. 40.

    McMullen, C.T.: Dynamics on blowups of the projective plane. Publ. Math. Inst. Hautes Études Sci. 105, 49–89 (2007)

  41. 41.

    Morrison, D.R.: Beyond the Kähler cone. In: Teicher, M. (ed.) Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, pp. 361–376, vol. 9. Bar-Ilan University, Ramat Gan (1996)

  42. 42.

    Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or \(K3\) surface. Invent. Math. 77(1), 101–116 (1984)

  43. 43.

    Markman, E., Yoshioka, K.: A proof of the Kawamata–Morrison cone conjecture for holomorphic symplectic varieties of \(K3^{[n]}\) or generalized Kummer deformation type. Int. Math. Res. Not. IMRN 24, 13563–13574 (2015)

  44. 44.

    Namikawa, Y.: Periods of Enriques surfaces. Math. Ann. 270(2), 201–222 (1985)

  45. 45.

    O’Grady, K.G.: The weight-two Hodge structure of moduli spaces of sheaves on a \(K3\) surface. J. Algebraic Geom. 6(4), 599–644 (1997)

  46. 46.

    Oguiso, K.: Tits alternative in hypekähler manifolds. Math. Res. Lett. 13(2–3), 307–316 (2006)

  47. 47.

    Oguiso, K.: Automorphisms of hyperkähler manifolds in the view of topological entropy. In: Keum, J.H., Kondō, S. (eds.) Algebraic Geometry, Contemporary of Mathematics, vol. 422, pp. 173–185. American Mathematical Society, Providence (2007)

  48. 48.

    Oguiso, K.: Bimeromorphic automorphism groups of non-projective hyperkähler manifolds–a note inspired by C. T. McMullen. J. Differ. Geom. 78(1), 163–191 (2008)

  49. 49.

    Oguiso, K.: Automorphism groups of Calabi–Yau manifolds of Picard number 2. J. Algebraic Geom. 23(4), 775–795 (2014)

  50. 50.

    Perego, A.: Kählerness of moduli spaces of stable sheaves over non-projective K3 surfaces. Algebraic Geom. 6(4), 427–453 (2019).

  51. 51.

    Prendergast-Smith, A.: The cone conjecture for abelian varieties. J. Math. Sci. Univ. Tokyo 19(2), 243–261 (2012)

  52. 52.

    Perego, A., Toma, M.: Moduli spaces of bundles over nonprojective K3 surfaces. Kyoto J. Math. 57(1), 107–146 (2017)

  53. 53.

    Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1955–1956)

  54. 54.

    Sterk, H.: Finiteness results for algebraic \(K3\) surfaces. Math. Z. 189(4), 507–513 (1985)

  55. 55.

    Totaro, B.: The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154(2), 241–263 (2010)

  56. 56.

    Totaro, B.: Algebraic surfaces and hyperbolic geometry. In: Current Developments in Algebraic Geometry, Mathematical Sciences Research Institute Publications, vol. 59, pp. 405–426. Cambridge University Press, Cambridge (2012)

  57. 57.

    Verbitsky, M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162(15), 2929–2986 (2013). (appendix A by Eyal Markman)

  58. 58.

    Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds. Acta Math. 215(1), 161–182 (2015)

  59. 59.

    Welschinger, J.-Y.: Deformation classes of real ruled manifolds. J. Reine Angew. Math. 574, 103–120 (2004)

  60. 60.

    Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001)

Download references


We are grateful to Ekaterina Amerik, Samuel Boissière, Kenneth Brown, Grégoire Menet, Giovanni Mongardi and Jean-Yves Welschinger for helpful discussions. The work started during the second Japanese-European Symposium on symplectic varieties and moduli spaces at Levico Terme in September 2017. We would like to thank the organizers and other participants of the conference.

Author information

Correspondence to Lie Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrea Cattaneo is supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX- 0007) operated by the French National Research Agency (ANR) and is member of GNSAGA of INdAM. Lie Fu is supported by ECOVA (ANR-15-CE40-0002), HodgeFun (ANR-16-CE40-0011), LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon and Projet Inter-Laboratoire 2017, 2018 by Fédération de Recherche en Mathématiques Rhône-Alpes/Auvergne CNRS 3490.

Communicated by Jean-Yves Welschinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cattaneo, A., Fu, L. Finiteness of Klein actions and real structures on compact hyperkähler manifolds. Math. Ann. 375, 1783–1822 (2019).

Download citation

Mathematics Subject Classification

  • 14P99
  • 14J50
  • 53G26