Advertisement

Continuation beyond interior gradient blow-up in a semilinear parabolic equation

  • Marek Fila
  • Johannes LankeitEmail author
Article
  • 23 Downloads

Abstract

It is known that there is a class of semilinear parabolic equations for which interior gradient blow-up (in finite time) occurs for some solutions. We construct a continuation of such solutions after gradient blow-up. This continuation is global in time and we give an example when it never becomes a classical solution again.

Keyword

Mathematics Subject Classification

35K55 35B44 

Notes

Acknowledgements

The first author was supported in part by the Slovak Research and Development Agency under the contract No. APVV-14-0378 and by the VEGA Grant 1/0347/18.

References

  1. 1.
    Angenent, S.B., Fila, M.: Interior gradient blow-up in a semilinear parabolic equation. Differ. Integral Equ. 9(5), 865–877 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Asai, K., Ishimura, N.: On the interior derivative blow-up for the curvature evolution of capillary surfaces. Proc. Am. Math. Soc. 126(3), 835–840 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barles, G., Da Lio, F.: On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations. J. Math. Pures Appl. (9) 83(1), 53–75 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y.-G., Giga, Y., Sato, K.: On instant extinction for very fast diffusion equations. Discrete Contin. Dyn. Syst. 3(2), 243–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Conner, G.R., Grant, C.P.: Asymptotics of blowup for a convection-diffusion equation with conservation. Differ. Integral Equ. 9(4), 719–728 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dłotko, T.: Examples of parabolic problems with blowing-up derivatives. J. Math. Anal. Appl. 154(1), 226–237 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fila, M., Lieberman, G.M.: Derivative blow-up and beyond for quasilinear parabolic equations. Differ. Integral Equ. 7(3–4), 811–821 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fila, M., Taskinen, J., Winkler, M.: Convergence to a singular steady state of a parabolic equation with gradient blow-up. Appl. Math. Lett. 20(5), 578–582 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Filippov, A .F.: Conditions for the existence of a solution for a quasilinear parabolic equation. Sov. Math. Dokl. 2, 1517–1519 (1961)zbMATHGoogle Scholar
  10. 10.
    Giga, Y.: Interior derivative blow-up for quasilinear parabolic equations. Discrete Contin. Dyn. Syst. 1(3), 449–461 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, J.-S., Hu, B.: Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete Contin. Dyn. Syst. 20(4), 927–937 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kutev, N.: Global solvability and boundary gradient blow up for one dimensional parabolic equations. In: Progress in partial Differential Equations: Elliptic and Parabolic Problems. Proceedings of the First European Conference on Elliptic and Parabolic Problems Held in Pont-à-Mousson, France, June 1991, pp. 176–181. Longman Scientific & Technical, Harlow, Wiley, New York (1992)Google Scholar
  13. 13.
    Kutev, N.: Gradient blow-ups and global solvability after the blow-up time for nonlinear parabolic equations. In: Evolution Equations, Control Theory, and Biomathematics. Proceedings of 3rd International Workshop-Conference, Held at the Han-sur-Lesse Conference Center of the Belgian Ministry of Education, pp. 301–306. Dekker, Basel (1993)Google Scholar
  14. 14.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural\(^{\prime }\)ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)Google Scholar
  15. 15.
    Li, Y., Souplet, Ph.: Single-point gradient blow-up on the boundary for diffusive Hamilton–Jacobi equations in planar domains. Commun. Math. Phys. 293(2), 499–517 (2010)Google Scholar
  16. 16.
    Porretta, A., Souplet, Ph.: Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation. J. Math, Pures et Appl (2019).  https://doi.org/10.1016/j.matpur.2019.02.014
  17. 17.
    Porretta, A., Souplet, Ph.: Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34(7), 1913–1923 (2017)Google Scholar
  18. 18.
    Porretta, A., Souplet, Ph.: The profile of boundary gradient blowup for the diffusive Hamilton–Jacobi equation. Int. Math. Res. Not. 2017(17), 5260–5301 (2017)Google Scholar
  19. 19.
    Porretta, A., Zuazua, E.: Null controllability of viscous Hamilton–Jacobi equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29(3), 301–333 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Quaas, A., Rodríguez, A.: Loss of boundary conditions for fully nonlinear parabolic equations with superquadratic gradient terms. J. Differ. Equ. 264(4), 2897–2935 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Quittner, P., Souplet, Ph.: Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhäuser, Basel (2007)Google Scholar
  22. 22.
    Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)zbMATHGoogle Scholar
  23. 23.
    Souplet, Ph.: Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions. Differ. Integral Equ. 15(2), 237–256 (2002)Google Scholar
  24. 24.
    Zhang, Z., Hu, B.: Rate estimates of gradient blowup for a heat equation with exponential nonlinearity. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 72(12), 4594–4601 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, Z., Li, Z.: A note on gradient blowup rate of an inhomogeneous Hamilton–Jacobi equation. Acta Math. Sci. Ser. B Engl. Ed. 33(3), 678–686 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia

Personalised recommendations