Elastic curves and phase transitions

  • Tatsuya MiuraEmail author


This paper is devoted to a classical variational problem for planar elastic curves of clamped endpoints, so-called Euler’s elastica problem. We investigate a straightening limit that means enlarging the distance of the endpoints, and obtain several new results concerning properties of least energy solutions. In particular we reach a first uniqueness result that assumes no symmetry. As a key ingredient we develop a foundational singular perturbation theory for the modified total squared curvature energy. It turns out that our energy has almost the same variational structure as a phase transition energy of Modica–Mortola type at the level of a first order singular limit.

Mathematics Subject Classification

49Q10 53A04 



The author would like to thank Professor Yoshikazu Giga, Professor Yasuhito Miyamoto, Professor Michiaki Onodera, and Dr. Olivier Pierre-Louis for their helpful comments and discussion. In particular, Professor Miyamoto indicated to the author that our study is related to the works by Ni and Takagi. The author learned of Audoly and Pomeau’s book from Dr. Pierre-Louis, and found a description related to our study. The author would also like thank anonymous referees for their careful reading and useful comments. This work is mainly carried out at the University of Tokyo and partly at the Max Planck Institute for Mathematics in the Sciences. This work is partially supported by JSPS KAKENHI Grant Numbers JP15J05166, JP18J30004, and also the Program for Leading Graduate Schools, MEXT, Japan.


  1. 1.
    Antman, S.S.: The influence of elasticity on analysis: modern developments. Bull. Amer. Math. Soc. (N.S.) 9(3), 267–291 (1983)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Antman, S.S.: Nonlinear problems of elasticity. Springer-Verlag, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Ardentov, A.A., Sachkov, YuL: Solution of Euler’s elastica problem. Autom. Remote Control 70(4), 633–643 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  5. 5.
    Avvakumov, S., Karpenkov, O., Sossinsky, A.: Euler elasticae in the plane and the Whitney–Graustein theorem. Russ. J. Math. Phys. 20(3), 257–267 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bergner, M., Dall’Acqua, A., Fröhlich, S.: Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc. Var. Part. Differ. Equ. 39(3–4), 361–378 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bernard, Y.: Analysis of constrained Willmore surfaces. Commun. Part. Differ. Equ. 41(10), 1513–1552 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bernard, Y., Rivière, T.: Energy quantization for Willmore surfaces and applications. Ann. Math. (2) 180(1), 87–136 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, PhD thesis, University of Göttingen, (1906)Google Scholar
  10. 10.
    Braides, A.: Local minimization, variational evolution and \(\Gamma \)-convergence. Springer, Cham (2014)zbMATHGoogle Scholar
  11. 11.
    Brunnett, G.: A new characterization of plane elastica. In: Mathematical methods in computer aided geometric design, II. Academic Press, Boston, pp. 43–56 (1992)Google Scholar
  12. 12.
    Bucur, D., Henrot, A.: A new isoperimetric inequality for the elasticae. J. Eur. Math. Soc. 19(11), 3355–3376 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Caffarelli, L.A., Córdoba, A.: Uniform convergence of a singular perturbation problem. Commun. Pure Appl. Math. 48(1), 1–12 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Carr, J., Gurtin, M.E., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Ration. Mech. Anal. 86(4), 317–351 (1984)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys 28, 258–267 (1958)Google Scholar
  16. 16.
    Dall’Acqua, A.: Uniqueness for the homogeneous Dirichlet Willmore boundary value problem. Ann. Global Anal. Geom. 42(3), 411–420 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dall’Acqua, A., Deckelnick, K.: An obstacle problem for elastic graphs, Preprint No. 2 Universität Magdeburg (2017), 20 ppGoogle Scholar
  18. 18.
    Dall’Acqua, A., Deckelnick, K., Grunau, H.-C.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1(4), 379–397 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dall’Acqua, A., Deckelnick, K., Wheeler, G.: Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc. Var. Part. Differ. Equ. 48(3–4), 293–313 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dall’Acqua, A., Fröhlich, S., Grunau, H.-C., Schieweck, F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1–81 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dal Maso, G.: An introduction to \(\Gamma \)-convergence. Birkhäuser, Boston (1993)zbMATHGoogle Scholar
  22. 22.
    Dayrens, F., Masnou, S., Novaga, M.: Existence, regularity and structure of confined elasticae. ESAIM Control Optim. Calc. Var. 24(1), 25–43 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dall’Acqua, A., Pluda, A.: Some minimization problems for planar networks of elastic curves. Geom. Flows 2, 105–124 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Dall’Acqua, A., Novaga, M., Pluda, A.: Minimal elastic networks, preprint. arXiv:1712.09589
  25. 25.
    Deckelnick, K., Grunau, H.-C.: Boundary value problems for the one-dimensional Willmore equation. Calc. Var. Part. Differ. Equ. 30(3), 293–314 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Deckelnick, K., Grunau, H.-C.: Stability and symmetry in the Navier problem for the one-dimensional Willmore equation. SIAM J. Math. Anal. 40(5), 2055–2076 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Djondjorov, P., Hadzhilazova, M. Ts., Mladenov, I. M., Vassilev, V. M.: Explicit parameterization of Euler’s elastica, In: Geometry, integrability and quantization, Softex, Sofia, pp. 175–186 (2008)Google Scholar
  28. 28.
    Dondl, P.W., Lemenant, A., Wojtowytsch, S.: Phase field models for thin elastic structures with topological constraint. Arch. Ration. Mech. Anal. 223(2), 693–736 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Dondl, P.W., Mugnai, L., Röger, M.: Confined elastic curves. SIAM J. Appl. Math. 71(6), 2205–2226 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Eichmann, S., Koeller, A.: Symmetry for Willmore surfaces of revolution. J. Geom. Anal. 27(1), 618–642 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti, Marcum-Michaelem Bousquet & socios, Lausanne, Geneva, (1744)Google Scholar
  32. 32.
    Ferone, V., Kawohl, B., Nitsch, C.: The elastica problem under area constraint. Math. Ann. 365(3–4), 987–1015 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Fraser, C.G.: Mathematical technique and physical conception in Euler’s investigation of the elastica. Centaurus 34(3), 211–246 (1991)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gabutti, B., Lepora, P., Merlo, G.: A bifurcation problem involving elastica. Meccanica 15, 154–165 (1980)zbMATHGoogle Scholar
  35. 35.
    Gage, M.E.: An isoperimetric inequality with applications to curve shortening. Duke Math. J. 50(4), 1225–1229 (1983)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Gerlach, H., Reiter, P., von der Mosel, H.: The Elastic Trefoil is the Doubly Covered Circle. Arch. Ration. Mech. Anal. 225(1), 89–139 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Gonzalez, O., Maddocks, J.H., Schuricht, F., von der Mosel, H.: Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Part. Diff. Equ. 14(1), 29–68 (2002)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Grunau, H.-C.: The asymptotic shape of a boundary layer of symmetric Willmore surfaces of revolution, In: Inequalities and applications 2010, International Series of Numerical Mathematics 161, Springer, Basel, pp. 19–29 (2012)Google Scholar
  39. 39.
    Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Part. Differ. Equ. 10(1), 49–84 (2000)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Jin, M., Bao, Z.B.: An improved proof of instability of some Euler elasticas. J. Elast. 121(2), 303–308 (2015)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Keller, L.G.A., Mondino, A., Rivière, T.: Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2), 645–682 (2014)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Kemmochi, T.: Numerical analysis of elastica with obstacle and adhesion effects. Appl. Anal. (in press)
  43. 43.
    Koiso, N.: Elasticae in a Riemannian submanifold. Osaka J. Math. 29(3), 539–543 (1992)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Kuwert, E., Schätzle, R.: The Willmore functional, In: Topics in modern regularity theory, CRM Series, 13, Ed. Norm., Pisa, pp. 1–115 (2012)Google Scholar
  45. 45.
    Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Langer, J., Singer, D.A.: Knotted elastic curves in \({\mathbb{R}}^{3}\). J. Lond. Math. Soc. (2) 30(3), 512–520 (1984)zbMATHGoogle Scholar
  47. 47.
    Langer, J., Singer, D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75–88 (1985)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Lawden, D.F.: Elliptic functions and applications. Springer-Verlag, New York (1989)zbMATHGoogle Scholar
  49. 49.
    Levien, R.: The elastica: a mathematical history, Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, (2008)Google Scholar
  50. 50.
    Linnér, A.: Existence of free nonclosed Euler-Bernoulli elastica. Nonlinear Anal. 21(8), 575–593 (1993)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Linnér, A.: Unified representations of nonlinear splines. J. Approx. Theory 84(3), 315–350 (1996)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Linnér, A.: Curve-straightening and the Palais-Smale condition. Trans. Am. Math. Soc. 350(9), 3743–3765 (1998)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Linnér, A.: Explicit elastic curves. Ann. Global Anal. Geom. 16(5), 445–475 (1998)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Linnér, A., Jerome, J.W.: A unique graph of minimal elastic energy. Trans. Am. Math. Soc. 359(5), 2021–2041 (2007)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications, New York (1944)zbMATHGoogle Scholar
  56. 56.
    Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Mandel, R.: Boundary value problems for Willmore curves in \({\mathbb{R}}^2\). Calc. Var. Part. Differ. Equ. 54(4), 3905–3925 (2015)zbMATHGoogle Scholar
  58. 58.
    Mandel, R.: Explicit formulas and symmetry breaking for Willmore surfaces of revolution. Ann. Global Anal. Geom. 54(2), 187–236 (2018)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Manning, R.S.: A catalogue of stable equilibria of planar extensible or inextensible elastic rods for all possible Dirichlet boundary conditions. J. Elast. 115(2), 105–130 (2014)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Matsutani, S.: Euler’s elastica and beyond. J. Geom. Symmetry Phys. 17, 45–86 (2010)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Miura, T.: Singular perturbation by bending for an adhesive obstacle problem. Calc. Var. Part. Differ. Equ. (in press)
  63. 63.
    Miura, T.: Overhanging of membranes adhering to periodic graph substrates. Phys. D 355, 34–44 (2017)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Mladenov, I.M., Hadzhilazova, M.: The many faces of elastica. Springer, Cham (2017)zbMATHGoogle Scholar
  65. 65.
    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Modica, L., Mortola, S.: Un esempio di \(\varGamma ^-\)-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Ni, W.-M., Pan, X.-B., Takagi, I.: Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents. Duke Math. J. 67(1), 1–20 (1992)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44(7), 819–851 (1991)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363–387 (1993)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Novaga, M., Okabe, S.: Convergence to equilibrium of gradient flows defined on planar curves. J. Reine Angew. Math. 733, 87–119 (2017)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Sachkov, YuL: Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14(2), 169–234 (2008)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Sachkov, YuL: Conjugate points in the Euler elastic problem. J. Dyn. Control Syst. 14(3), 409–439 (2008)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Sachkov, YuL: Closed Euler elasticae. Proc. Steklov Inst. Math. 278(1), 218–232 (2012)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Sachkov, YuL, Sachkova, E.F.: Exponential mapping in Euler’s elastic problem. J. Dyn. Control Syst. 20(4), 443–464 (2014)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Sachkov, YuL, Levyakov, S.V.: Stability of inflectional elasticae centered at vertices or inflection points. Proc. Steklov Inst. Math. 271(1), 177–192 (2010)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Schätzle, R.: The Willmore boundary problem. Calc. Var. Part. Differ. Equ. 37(3–4), 275–302 (2010)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Singer, D. A.: Lectures on elastic curves and rods, In: Curvature and variational modeling in physics and biophysics, Vol. 1002, Amer. Inst. Phys., Melville, NY, (pp. 3–32) (2008)Google Scholar
  80. 80.
    Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260 (1988)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Truesdell, C.: The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.) 9(3), 293–310 (1983)MathSciNetzbMATHGoogle Scholar
  82. 82.
    van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat. Phys. 20, 200–244 (1979). (Translated version of: J. D. van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung Stetiger Dichteänderung, Zeitschrift für Physikalische Chemie 13 (1894), 657–725.)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan
  2. 2.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations