Advertisement

Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets

  • Jean-Baptiste Campesato
  • Toshizumi Fukui
  • Krzysztof Kurdyka
  • Adam ParusińskiEmail author
Article
  • 31 Downloads

Abstract

We investigate connections between Lipschitz geometry of real algebraic varieties and properties of their arc spaces. For this purpose we develop motivic integration in the real algebraic set-up. We construct a motivic measure on the space of real analytic arcs. We use this measure to define a real motivic integral which admits a change of variables formula not only for the birational but also for generically one-to-one Nash maps. As a consequence we obtain an inverse mapping theorem which holds for continuous rational maps and, more generally, for generically arc-analytic maps. These maps appeared recently in the classification of singularities of real analytic function germs. Finally, as an application, we characterize in terms of the motivic measure, germs of arc-analytic homeomorphism between real algebraic varieties which are bi-Lipschitz for the inner metric.

Mathematics Subject Classification

14P99 (Primary) 26A16 14E18 14B05 

Notes

References

  1. 1.
    Batyrev, V.V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 1–32. World Scientific Publishing, River Edge (1998)Google Scholar
  2. 2.
    Bierstone, E., Milman, P.D.: Arc-analytic functions. Invent. Math. 101(2), 411–424 (1990).  https://doi.org/10.1007/BF01231509 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997).  https://doi.org/10.1007/s002220050141 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Birbrair, L., Neumann, W.D., Pichon, A.: The thick-thin decomposition and the bilipschitz classification of normal surface singularities. Acta Math. 212(2), 199–256 (2014).  https://doi.org/10.1007/s11511-014-0111-8 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bochnak, J.: Analytic functions in Banach spaces. Stud. Math. 35, 273–292 (1970).  https://doi.org/10.4064/sm-35-3-273-292 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bochnak, J., Coste, M., Roy, M.F.: Real algebraic geometry. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin (1998).  https://doi.org/10.1007/978-3-662-03718-8. Translated from the 1987 French original, Revised by the authors
  7. 7.
    Borisov, L.A.: The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebraic Geom. 27(2), 203–209 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Campesato, J.B.: An inverse mapping theorem for blow-Nash maps on singular spaces. Nagoya Math. J. 223(1), 162–194 (2016).  https://doi.org/10.1017/nmj.2016.29 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Campesato, J.B.: On a motivic invariant of the arc-analytic equivalence. Ann. Inst. Fourier (Grenoble) 67(1), 143–196 (2017). http://aif.cedram.org/item?id=AIF_2017__67_1_143_0
  10. 10.
    Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999).  https://doi.org/10.1007/s002220050284 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Denef, J., Loeser, F.: Motivic integration, quotient singularities and the McKay correspondence. Compos. Math. 131(3), 267–290 (2002).  https://doi.org/10.1023/A:1015565912485 MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fichou, G.: Motivic invariants of arc-symmetric sets and blow-Nash equivalence. Compos. Math. 141(3), 655–688 (2005).  https://doi.org/10.1112/S0010437X05001168 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fichou, G.: On Grothendieck rings and algebraically constructible functions. Math. Ann. 369(1–2), 761–795 (2017).  https://doi.org/10.1007/s00208-017-1564-9 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fukui, T., Kurdyka, K., Păunescu, L.: An inverse mapping theorem for arc-analytic homeomorphisms. In: Geometric Singularity Theory, Banach Center Publ., vol. 65, pp. 49–56. Polish Acad. Sci. Inst. Math., Warsaw (2004).  https://doi.org/10.4064/bc65-0-3
  15. 15.
    Greenberg, M.J.: Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math. (31), 59–64 (1966). http://www.numdam.org/item?id=PMIHES_1966__31__59_0
  16. 16.
    Halupczok, I., Yin, Y.: Lipschitz stratifications in power-bounded o-minimal fields. J. Eur. Math. Soc. (JEMS) 20(11), 2717–2767 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. (2) 79, 109–203 (1964)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. (2) 79, 205–326 (1964)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Koike, S., Parusiński, A.: Motivic-type invariants of blow-analytic equivalence. Ann. Inst. Fourier (Grenoble) 53(7), 2061–2104 (2003). http://aif.cedram.org/item?id=AIF_2003__53_7_2061_0
  20. 20.
    Kollár, J., Kucharz, W., Kurdyka, K.: Curve-rational functions. Math. Ann. 370(1–2), 39–69 (2018).  https://doi.org/10.1007/s00208-016-1513-z MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kollár, J., Nowak, K.: Continuous rational functions on real and \(p\)-adic varieties. Math. Z. 279(1–2), 85–97 (2015).  https://doi.org/10.1007/s00209-014-1358-7 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kucharz, W.: Rational maps in real algebraic geometry. Adv. Geom. 9(4), 517–539 (2009).  https://doi.org/10.1515/ADVGEOM.2009.024 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 282(3), 445–462 (1988).  https://doi.org/10.1007/BF01460044 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kurdyka, K.: On a subanalytic stratification satisfying a Whitney property with exponent \(1\). In: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, pp. 316–322. Springer, Berlin (1992).  https://doi.org/10.1007/BFb0084630
  25. 25.
    Kurdyka, K., Orro, P.: Distance géodésique sur un sous-analytique. Rev. Mat. Univ. Complut. Madrid 10(Special Issue, suppl.), 173–182 (1997) (Real algebraic and analytic geometry (Segovia, 1995)) Google Scholar
  26. 26.
    Kurdyka, K., Parusiński, A.: Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture. In: Singularity Theory and its Applications, Advanced Studies in Pure Mathematics, vol. 43, pp. 137–177. Math. Soc. Japan, Tokyo (2006)Google Scholar
  27. 27.
    Kurdyka, K., Parusiński, A.: Arc-symmetric sets and arc-analytic mappings. In: Arc Spaces and Additive Invariants in Real Algebraic and Analytic Geometry. Panor. Synthèses, vol. 24, pp. 33–67. Soc. Math. France, Paris (2007)Google Scholar
  28. 28.
    Kurdyka, K., Păunescu, L.: Arc-analyticity is an open property. In: Singularités Franco-Japonaises, Sémin. Congr., vol. 10, pp. 155–162. Soc. Math. France, Paris (2005)Google Scholar
  29. 29.
    Looijenga, E.: Motivic measures. Astérisque (276), 267–297 (2002). Séminaire Bourbaki, vol. 1999/2000Google Scholar
  30. 30.
    Malgrange, B.: Ideals of differentiable functions. In: Tata Institute of Fundamental Research Studies in Mathematics, No. 3. Tata Institute of Fundamental Research, Bombay; Oxford University Press, London (1967)Google Scholar
  31. 31.
    Martin, N.: The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939 (2016).  https://doi.org/10.1016/j.crma.2016.05.016 MathSciNetzbMATHGoogle Scholar
  32. 32.
    McCrory, C., Parusiński, A.: Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336(9), 763–768 (2003).  https://doi.org/10.1016/S1631-073X(03)00168-7 MathSciNetzbMATHGoogle Scholar
  33. 33.
    McCrory, C., Parusiński, A.: The weight filtration for real algebraic varieties. In: Topology of Stratified Spaces, Math. Sci. Res. Inst. Publ., vol. 58, pp. 121–160. Cambridge University Press, Cambridge (2011)Google Scholar
  34. 34.
    Mostowski, T.: Lipschitz equisingularity. Diss. Math. (Rozpr. Mat.) 243, 46 (1985)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Motzkin, T.S.: The real solution set of a system of algebraic inequalities is the projection of a hypersurface in one more dimension. In: Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), pp. 251–254. Academic Press, New York (1970)Google Scholar
  36. 36.
    Nash Jr., J.F.: Arc structure of singularities. Duke Math. J. 81(1), 31–38 (1996) (1995).  https://doi.org/10.1215/S0012-7094-95-08103-4. (A celebration of John F. Nash, Jr)
  37. 37.
    Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213 (1988). http://www.numdam.org/item?id=AIF_1988__38_4_189_0
  38. 38.
    Parusiński, A.: Lipschitz stratification. In: Global Analysis in Modern Mathematics (Orono, ME, 1991; Waltham, MA, 1992), pp. 73–89. Publish or Perish, Houston (1993)Google Scholar
  39. 39.
    Parusiński, A.: Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm. Sup. (4) 27(6), 661–696 (1994). http://www.numdam.org/item?id=ASENS_1994_4_27_6_661_0
  40. 40.
    Parusiński, A.: Subanalytic functions. Trans. Am. Math. Soc. 344(2), 583–595 (1994).  https://doi.org/10.2307/2154496 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Parusiński, A.: Topology of injective endomorphisms of real algebraic sets. Math. Ann. 328(1–2), 353–372 (2004).  https://doi.org/10.1007/s00208-003-0486-x MathSciNetzbMATHGoogle Scholar
  42. 42.
    Parusiński, A., Păunescu, L.: Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254–305 (2017).  https://doi.org/10.1016/j.aim.2017.01.016 MathSciNetzbMATHGoogle Scholar
  43. 43.
    Pawłucki, W.: Lipschitz cell decomposition in o-minimal structures. I. Ill. J. Math. 52(3), 1045–1063 (2008). http://projecteuclid.org/euclid.ijm/1254403731
  44. 44.
    Poonen, B.: The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497 (2002).  https://doi.org/10.4310/MRL.2002.v9.n4.a8 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Quarez, R.: Espace des germes d’arcs réels et série de Poincaré d’un ensemble semi-algébrique. Ann. Inst. Fourier (Grenoble) 51(1), 43–68 (2001). http://aif.cedram.org/item?id=AIF_2001__51_1_43_0
  46. 46.
    Siciak, J.: A characterization of analytic functions of \(n\) real variables. Stud. Math. 35, 293–297 (1970).  https://doi.org/10.4064/sm-35-3-293-297 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Valette, G.: Lipschitz triangulations. Ill. J. Math. 49(3), 953–979 (2005). http://projecteuclid.org/euclid.ijm/1258138230
  48. 48.
    Valette, G.: On metric types that are definable in an o-minimal structure. J. Symb. Log. 73(2), 439–447 (2008).  https://doi.org/10.2178/jsl/1208359053 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Zariski, O.: Exceptional singularities of an algebroid surface and their reduction. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 43, 135–146 (1967)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille University, CNRS, Centrale Marseille, I2MMarseilleFrance
  2. 2.Department of Mathematics, Faculty of ScienceSaitama UniversitySaitamaJapan
  3. 3.University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LAMAChambéryFrance
  4. 4.Université Côte d’Azur, Université Nice Sophia Antipolis, CNRS, LJADNiceFrance

Personalised recommendations