Advertisement

Mathematische Annalen

, Volume 373, Issue 3–4, pp 1329–1339 | Cite as

A gap theorem for positive Einstein metrics on the four-sphere

  • Kazuo AkutagawaEmail author
  • Hisaaki Endo
  • Harish Seshadri
Article
  • 149 Downloads

Abstract

We show that there exists a universal positive constant \(\varepsilon _0 > 0\) with the following property: let g be a positive Einstein metric on the four-sphere \(S^4\). If the Yamabe constant of the conformal class [g] satisfies
$$\begin{aligned} Y(S^4, [g]) >\frac{1}{\sqrt{3}} Y(S^4, [g_{\mathbb S}]) - \varepsilon _0\,, \end{aligned}$$
where \(g_{\mathbb S}\) denotes the standard round metric on \(S^4\), then, up to rescaling, g is isometric to \(g_{\mathbb S}\). This is an extension of Gursky’s gap theorem for positive Einstein metrics on \(S^4\).

Notes

Acknowledgements

The authors would like to thank Anda Degeratu and Rafe Mazzeo for valuable discussions on the eta invariant, and Shouhei Honda for helpful discussions on convergence results of Riemannian manifolds with bounded Ricci curvature. They would also like to thank Matthew Gursky and Claude LeBrun for useful advice, and Gilles Carron and the anonymous referee for crucial comments.

References

  1. 1.
    Akutagawa, K., Botvinnik, B., Kobayashi, O., Seshadri, H.: The Weyl functional near the Yamabe invariant. J. Geom. Anal. 13, 1–20 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, M.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc. 2, 455–490 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anderson, M.: Einstein metrics with prescribed conformal infinity on \(4\)-manifolds. Geom. Funct. Anal. 18, 305–366 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bando, S.: Bubbling out of Einstein manifolds. Tohoku Math. 42, 205–216 (1990). [Correction and addition. Tohoku Math. J. 42, 587–588 (1990)] MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97, 313–349 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39, 661–693 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Besse, A.: Einstein Manifolds. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  8. 8.
    Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5, 731–799 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Böhm, C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134, 145–176 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bourguignon, J.-P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. 11, 71–92 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crisp, J.S., Hillman, J.A.: Embedding Seifert fibred and \(3\)-manifolds and \({{\rm Sol}}^{3}\)-manifolds in \(4\)-space. Proc. Lond. Math. Soc. 76, 685–710 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ebin, D.: The manifold of Riemannian metrics, global analysis. Proc. Symp. Pure Math. 15, 11–40 (1968)CrossRefGoogle Scholar
  13. 13.
    Eguchi, T., Hanson, A.J.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120, 82–106 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gursky, M.: Four-manifolds with \(\delta W^+ = 0\) and Einstein constants on the sphere. Math. Ann. 318, 417–43 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gursky, M., LeBrun, C.: On Einstein manifolds of positive sectional curvature. Ann. Glob. Anal. Geom. 17, 315–328 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hitchin, N.: Einstein metrics and the eta-invariant. Bull. U. M. I. 11–B, 92–105 (1997)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jensen, G.R.: Einstein metrics on principal fibre bundles. J. Diff. Geom. 8, 599–614 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koiso, N.: Non-deformability of Einstein metrics. Osaka J. Math. 15, 419–433 (1978)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73, 71–106 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lawson, T.: Splitting \(S^4\) on \(\mathbb{RP}^2\) via the branched cover of \(\mathbb{CP}^2\) over \(S^4\). Proc. Am. Math. Soc. 86, 328–330 (1982)Google Scholar
  22. 22.
    LeBrun, C.: Einstein metrics and Mostow rigidity. Math. Res. Lett. 2, 1–8 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    LeBrun, C.: Four-manifolds without Einstein metrics. Math. Res. Lett. 3, 133–147 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–81 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nakajima, H.: Hausdorff convergence of Einstein \(4\)-manifolds. J. Fac. Sci. Univ. Tokyo 35, 411–424 (1988)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nakajima, H.: Self-duality of ALE Ricci-flat \(4\)-manifolds and positive mass theorem, in recent topics in differential and analytic geometry. Adv. Stud. Pure Math. 18–I, 313–349 (1990)Google Scholar
  27. 27.
    Nakajima, H.: A convergence theorem for Einstein metrics and the ALE spaces. Am. Math. Soc. Transl. 160, 79–94 (1994)zbMATHGoogle Scholar
  28. 28.
    Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Diff. Geom. 6, 247–258 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Giaquinta, M. (ed.) Topics in Calculus of Variations, Lect. Notes in Math, vol. 1365, pp. 121–154. Springer, Berlin (1989)Google Scholar
  30. 30.
    Thorpe, J.: Some remarks on the Gauss–Bonnet integral. J. Math. Mech. 18, 779–786 (1969)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Yang, D.: Rigidity of Einstein \(4\)-manifolds with positive curvature. Invent. Math. 142, 435–450 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of MathematicsChuo UniversityTokyoJapan
  3. 3.Mathematics DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations