Advertisement

Mathematische Annalen

, Volume 373, Issue 1–2, pp 237–251 | Cite as

Convexity of complements of tropical varieties, and approximations of currents

  • Karim AdiprasitoEmail author
  • Farhad Babaee
Article

Abstract

The goal of this note is to affirm a local version of conjecture of Nisse–Sottile [19] on higher convexity of complements of tropical varieties, while providing a family of counter-examples for the global Nisse–Sottle conjecture in any codimension and dimension higher than one. Moreover, it is shown that, surprisingly, this family also provides a family of counter-examples for the generalized Hodge conjecture for positive currents in these dimensions, and gives rise to further approximability obstruction.

Mathematics Subject Classification

14T05 14C30 32U40 

Notes

Acknowledgements

The authors thank the referees for the fruitful comments. We thank the CRM Ennio de Giorgi for its hospitality that enabled much of this work. Additionally, we are grateful to Emanuele Delucchi, Omid Amini, Romain Dujardin, Charles Favre, and Pierre Schapira for the encouraging discussions, and their support, and we are thankful to Nessim Sibony for the communications and references.

References

  1. 1.
    Adiprasito, Karim., Björner, Andres.: Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring. arXiv:1401.7301, Jan (2014)
  2. 2.
    Adiprasito, Karim., Huh, June., Katz, Eric.: Hodge theory for combinatorial geometries. arXiv:1511.02888, November (2015)
  3. 3.
    Adiprasito, K.A., Sanyal, R.: Relative Stanley-Reisner theory and upper bound theorems for Minkowski sums. Publ. Math., Inst. Hautes Étud. Sci. 124, 99–163 (2016). (English). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)CrossRefzbMATHGoogle Scholar
  5. 5.
    Aumann, Georg: On a topological characterization of compact convex point sets. Ann. Math. 37(2), 443–447 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Babaee, Farhad.: Complex tropical currents, Ph.D. thesis, Departments of Mathematics, Universities of Bordeanx and Padova, (2014)Google Scholar
  7. 7.
    Babaee, F., Huh, J.: A tropical approach to a generalized Hodge conjecture for positive currents. Duke Math. J. 166(14), 2749–2813 (2017). (MR 3707289 ) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gil, J.I.B., Sombra, M.: Sombra, Martín: When do the recession cones of a polyhedral complex form a fan? Discrete Comput. Geom. 46(4), 789–798 (2011). (MR 2846179 (2012j:14070)) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bushueva, N.A., Tsikh, A.K.: On amoebas of algebraic sets of higher codimensions. Tr. Mat. Inst. Steklova 279, 59–71 (2012). (no. Analiticheskie i Geometricheskie Voprosy Kompleksnogo Analiza, MR 3086757 ) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Demailly, J.-P.: Complex analytic and differential geometry, Free e-book. http://www.fourier.ujf-grenoble.fr/~demailly/books.html. Accessed 14 July 2018
  11. 11.
    Demailly, J.-P.: Courants positifs extrêmaux et conjecture de Hodge. Invent. Math. 69(3), 347–374 (1982). (MR 679762 (84f:32007)) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demailly, J.-P.: Analytic methods in algebraic geometry. In: Surveys of modern mathematics, vol. 1, International Press, Higher Education Press, Somerville, MA, Beijing (2012) (MR 2978333) Google Scholar
  13. 13.
    Diederich, Klas, Fornaess, John Erik: Smoothing \(q\)-convex functions and vanishing theorems. Invent. Math 82(2), 291–305 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fornaess, John Erik, Sibony, Nessim: Oka’s inequality for currents and applications. Math. Ann. 301(3), 399–419 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997). (MR 1415592 (97h:14070) ) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gromov, M.: Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61, 9–123 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Henriques, A.: An analogue of convexity for complements of amoebas of varieties of higher codimension, an answer to a question asked by B. Sturmfels. Adv. Geom 4(1), 61–73 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mikhalkin G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S., Eliashberg, Y., Gromov, M. (eds.) Different faces of geometry. International mathematical series, vol. 3. Springer, Boston, MA, pp. 257–300 (2004)Google Scholar
  19. 19.
    Nisse, M., Sottile, F.: Higher convexity for complements of tropical varieties. Math. Ann 365(1–2), 1–12 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rashkovskii, A.: A remark on amoebas in higher codimensions. In: Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, pp. 465–471, (2009) (MR 2724627 (2012a:32010)) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hebrew University of JerusalemJerusalemIsrael
  2. 2.Département de MathématiquesUniversité de FribourgFribourgSwitzerland

Personalised recommendations