Advertisement

Mathematische Annalen

, Volume 373, Issue 1–2, pp 517–551 | Cite as

Electric field concentration in the presence of an inclusion with eccentric core-shell geometry

  • Junbeom Kim
  • Mikyoung LimEmail author
Article
  • 156 Downloads

Abstract

In this paper we analyze the gradient blow-up of the solution to the conductivity problem in two dimensions in the presence of an inclusion with eccentric core-shell geometry. Assuming that the core and shell have circular boundaries that are nearly touching, we derive an asymptotic formula for the solution in terms of the single and double layer potentials with image line charges. We also deduce an integral formula with image line charges for the problem relating to two nearly touching separated conductors.

References

  1. 1.
    Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208(2), 667–692 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammari, H., Ciraolo, G., Kang, H., Lee, H., Yun, K.: Spectral analysis of the Neumann–Poincaré operator and characterization of the stress concentration in anti-plane elasticity. Arch. Ration. Mech. Anal. 208(1), 275–304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari, H., Dassios, G., Kang, H., Lim, M.: Estimates for the electric field in the presence of adjacent perfectly conducting spheres. Q. Appl. Math. 65(2), 339–356 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Sølna, K., Wang, H.: Mathematical and statistical methods for multistatic imaging, vol. 2098. Springer, Berlin (2013)zbMATHGoogle Scholar
  5. 5.
    Ammari, H., Kang, H.: Reconstruction of small inhomogeneities from boundary measurements. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ammari, H., Kang, H.: Polarization and moment tensors: with applications to inverse problems and effective medium theory, vol. 162. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Ammari, H., Kang, H., Lee, H., Lee, J., Lim, M.: Optimal estimates for the electric field in two dimensions. J. Math. Appl. 88(4), 307–324 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ammari, H., Kang, H., Lee, H., Lim, M., Zribi, H.: Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions. J. Differ. Equ. 247(11), 2897–2912 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ammari, H., Kang, H., Lim, M.: Gradient estimates for solutions to the conductivity problem. Math. Ann. 332(2), 277–286 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Babus̆ka, I., Andersson, B., Smith, P., Levin, K.: Damage analysis of fiber composites. I. Statistical analysis on fiber scale. Comput. Methods Appl. Mech. Engrg. 172, 27–77 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. A 355, 313–333 (1977)CrossRefGoogle Scholar
  12. 12.
    Budiansky, B., Carrier, G.F.: High shear stresses in stiff fiber composites. J. Appl. Mech. 51, 733–735 (1984)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bao, E.S., Li, Y.Y., Yin, B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193(1), 195–226 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bao, E.S., Li, Y.Y., Yin, B.: Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions. Commun. Partial Differ. Equ. 35(11), 1982–2006 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bao, J.G., Hongjie, J., Li, H.: Optimal boundary gradient estimates for Lamé systems with partially infinite coefficients. Adv. Math. 314, 583–629 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bao, J.G., Li, H.G., Li, Y.Y.: Gradient estimates for solutions of the Lamé system with partially infinite coefficients. Arch. Ration. Mech. Anal. 215(1), 307–351 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bao, J.G., Li, H.G., Li, Y.Y.: Gradient estimates for solutions of the Lamé system with partially infinite coefficients in dimensions greater than two. Adv. Math. 305, 298–338 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bonnetier, E., Triki, F.: Pointwise bounds on the gradient and the spectrum of the Neumann–Poincaré operator: the case of 2 discs. Contemp. Math 577, 81–92 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Davis, M.H.: Two charged spherical conductors in a uniform electric field: forces and field strength. Q J Mech Appl Math 17(4), 499–511 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jeffery, G.B.: On a form of the solution of Laplace’s equation suitable for problems relating to two spheres. Proc. R. Soc. Lond. Series A, containing papers of a mathematical and physical character, 87(593):109–120 (1912)Google Scholar
  21. 21.
    Kang, H., Lee, H., Yun, K.H.: Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions. Math. Ann. 363(3–4), 1281–1306 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kang, H., Lim, M., Yun, K.H.: Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities. J. Math. Pures Appl. 99(2), 234–249 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kang, H., Lim, M., Yun, K.H.: Characterization of the electric field concentration between two adjacent spherical perfect conductors. SIAM J. Appl. Math. 74(1), 125–146 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kang, H., Yu, S.: Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticity. arXiv preprint arXiv:1707.02207 (2017)
  25. 25.
    Kang, H., Yun, K.: Optimal estimates of the field enhancement in presence of a bow-tie structure of perfectly conducting inclusions in two dimensions. arXiv preprint arXiv:1707.00098 (2017)
  26. 26.
    Keller, J.B.: Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys. 34(4), 991–993 (1963)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kellogg, O.D.: Foundations of potential theory, vol. 31. Springer, Berlin (2012)zbMATHGoogle Scholar
  28. 28.
    Lassiter, J.B., Aizpurua, J., Hernandez, L.I., Brandl, D.W., Romero, I., Lal, S., Hafner, J.H., Nordlander, P., Halas, N.J.: Close encounters between two nanoshells. Nano Lett. 8(4), 1212–1218 (2008)CrossRefGoogle Scholar
  29. 29.
    Lekner, J.: Near approach of two conducting spheres: enhancement of external electric field. J. Electrostat. 69(6), 559–563 (2011)CrossRefGoogle Scholar
  30. 30.
    Li, H., Xu, L.: Optimal estimates for the perfect conductivity problem with inclusions close to the boundary. arXiv preprint. arXiv:1705.04459 (2017)
  31. 31.
    Li, Y.Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153(2), 91–151 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, Y., Nirenberg, L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56(7), 892–925 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lim, M., Yu, S.: Asymptotic analysis for superfocusing of the electric field in between two nearly touching metallic spheres. arXiv preprint arXiv:1412.2464 (2014)
  34. 34.
    Lim, M., Sanghyeon, Y.: Asymptotics of the solution to the conductivity equation in the presence of adjacent circular inclusions with finite conductivities. J. Math. Anal. Appl. 421(1), 131–156 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lim, M., Yu, S.: Stress concentration for two nearly touching circular holes. arXiv preprint arXiv:1705.10400 (2017)
  36. 36.
    Lim, M., Yun, K.: Blow-up of electric fields between closely spaced spherical perfect conductors. Commun. Partial Differ. Equ. 34(10), 1287–1315 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Maxwell, J.C.: A treatise on electricity and magnetism, vol. I, 3rd edn. Oxford University Press, Oxford (1891) [reprinted by Dover, New York (1954)] Google Scholar
  38. 38.
    McPhedran, R.C., Movchan, A.B.: The Rayleigh multipole method for linear elasticity. J. Mech. Phys. Solids 42(5), 711–727 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    McPhedran, R.C., Poladian, L., Milton, G.W.: Asymptotic studies of closely spaced, highly conducting cylinders. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 415, 185–196 (1988)CrossRefGoogle Scholar
  40. 40.
    Poladian, L.: General theory of electrical images in sphere pairs. Q. J. Mech. Appl. Math. 41(3), 395–417 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Poladian, L.: Asymptotic behaviour of the effective dielectric constants of composite materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 426, 343–359 (1989)CrossRefGoogle Scholar
  42. 42.
    Romero, I., Aizpurua, J., Bryant, G.W., Javier, F., de Abajo, G.: Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988–9999 (2006)CrossRefGoogle Scholar
  43. 43.
    Smythe, W.B.: Static and dynamic electricity. McGraw-Hill (1950)Google Scholar
  44. 44.
    Yu, S., Ammari, H.: Plasmonic interaction between nanospheres. SIAM Rev. 60(2), 356–385 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yu, S., Lim, M.: Shielding at a distance due to anomalous resonance. New J. Phys. 19(3), 033018 (2017)CrossRefGoogle Scholar
  46. 46.
    Yun, K.: Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape. SIAM J. Appl. Math. 67(3), 714–730 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Yun, K.H.: Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections. J. Math. Anal. Appl. 350(1), 306–312 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yun, K.: An optimal estimate for electric fields on the shortest line segment between two spherical insulators in three dimensions. arXiv:1504.07679

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations