Advertisement

Mathematische Annalen

, Volume 370, Issue 3–4, pp 1681–1716 | Cite as

Monodromy of the SL(n) and GL(n) Hitchin fibrations

  • David Baraglia
Article
  • 153 Downloads

Abstract

We compute the monodromy of the Hitchin fibration for the moduli space of L-twisted \(SL(n,\mathbb {C})\) and \(GL(n,\mathbb {C})\)-Higgs bundles for any n, on a compact Riemann surface of genus \(g>1\). We require the line bundle L to either be the canonical bundle or satisfy \(deg(L) > 2g-2\). The monodromy group is generated by Picard–Lefschetz transformations associated to vanishing cycles of singular spectral curves. We construct such vanishing cycles explicitly and use this to show that the \(SL(n,\mathbb {C})\) monodromy group is a skew-symmetric vanishing lattice in the sense of Janssen. Using the classification of vanishing lattices over \(\mathbb {Z}\), we completely determine the structure of the monodromy groups of the \(SL(n,\mathbb {C})\) and \(GL(n,\mathbb {C})\) Hitchin fibrations. As an application we determine the image of the restriction map from the cohomology of the moduli space of Higgs bundles to the cohomology of a non-singular fibre of the Hitchin fibration.

Mathematics Subject Classification

14H60 53C07 14H70 53M12 

Notes

Acknowledgements

We would like to thank Laura Schaposnik, Tamás Hausel and Nigel Hitchin helpful discussions.

References

  1. 1.
    Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4(4), 47–62 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baraglia, D., Schaposnik, L.: Monodromy of rank \(2\) twisted Hitchin systems and real character varieties. Trans. Am. Math. Soc. (2015).  https://doi.org/10.1090/tran/7144.
  3. 3.
    Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitre 9. Reprint of the 1959 original. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Brown, R., Humphries, S.P.: Orbits under symplectic transvections. I. Proc. Lond. Math. Soc. (3) 52(3), 517–531 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    de Cataldo, M.A.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. (N.S.) 46(4), 535–633 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Cataldo, M.A.A., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\). Ann. Math. (2) 175(3), 1329–1407 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Copeland, D.J.: Monodromy of the Hitchin map over hyperelliptic curves. Int. Math. Res. Not. 29, 1743–1785 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Bruyn, B.: On the Grassmann modules for the symplectic groups. J. Algebra 324(2), 218–230 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dolgachev, I., Libgober, A.: On the fundamental group of the complement to a discriminant variety. In: Algebraic Geometry, Lecture Notes in Mathematics, vol. 862, pp. 1–25. Springer, Berlin (1981)Google Scholar
  11. 11.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hitchin, N.J.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Janssen, W.A.M.: Skew-symmetric vanishing lattices and their monodromy groups. Math. Ann. 266(1), 115–133 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Janssen, W.A.M.: Skew-symmetric vanishing lattices and their monodromy groups. II. Math. Ann. 272(1), 17–22 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kouvidakis, A., Pantev, T.: The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302(2), 225–268 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  18. 18.
    Markman, E.: Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces. J. Reine Angew. Math. 544, 61–82 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ngô, B.C.: Le lemme fondamental pour les algébres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62(2), 275–300 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Richardson, R.W.: Conjugacy classes of \(n\)-tuples in Lie algebras and algebraic groups. Duke Math. J. 57(1), 1–35 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schaposnik, L.P.: Spectral data for \(G\)-Higgs bundles. DPhil thesis. (2013). arXiv:1301.1981
  23. 23.
    Schaposnik, L.P.: Monodromy of the \(SL2\) Hitchin fibration. Int. J. Math. 24(2), 1350013 (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    Thaddeus, M.: Topology of the moduli space of stable vector bundles over a compact Riemann surface. Masters thesis, University of Oxford (1989)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations